Xiaoli He, Hongri Gu, Yanmei Ma, Yuhang Cai, Huaide Jiang, Yi Zhang, Hanhan Xie, Ming Yang, Xinjian Fan, Liang Guo, Zhan Yang, Chengzhi Hu
{"title":"Light patterning semiconductor nanoparticles by modulating surface charges.","authors":"Xiaoli He, Hongri Gu, Yanmei Ma, Yuhang Cai, Huaide Jiang, Yi Zhang, Hanhan Xie, Ming Yang, Xinjian Fan, Liang Guo, Zhan Yang, Chengzhi Hu","doi":"10.1038/s41467-024-53926-7","DOIUrl":null,"url":null,"abstract":"<p><p>Optical patterning of colloidal particles is a scalable and cost-effective approach for creating multiscale functional structures. Existing methods often use high-intensity light sources and customized optical setups, making them less feasible for large-scale microfabrication processes. Here, we report an optical patterning method for semiconductor nanoparticles by light-triggered modulation of their surface charge. Rather than using light as the primary energy source, this method utilizes UV-induced cleavage of surface ligands to modify surface charges, thereby facilitating the self-assembly of nanoparticles on a charged substrate via electrostatic interactions. By using citrate-treated ZnO nanoparticles, uniform ZnO patterns with variable thicknesses can be achieved. These multilayered ZnO patterns are fabricated into a UV detector with an on/off ratio exceeding 10<sup>4</sup>. Our results demonstrate a simple yet effective way to pattern semiconductor nanoparticles, facilitating the large-scale integration of functional nanomaterials into emerging flexible and robotic microdevices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"9843"},"PeriodicalIF":14.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561258/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53926-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Optical patterning of colloidal particles is a scalable and cost-effective approach for creating multiscale functional structures. Existing methods often use high-intensity light sources and customized optical setups, making them less feasible for large-scale microfabrication processes. Here, we report an optical patterning method for semiconductor nanoparticles by light-triggered modulation of their surface charge. Rather than using light as the primary energy source, this method utilizes UV-induced cleavage of surface ligands to modify surface charges, thereby facilitating the self-assembly of nanoparticles on a charged substrate via electrostatic interactions. By using citrate-treated ZnO nanoparticles, uniform ZnO patterns with variable thicknesses can be achieved. These multilayered ZnO patterns are fabricated into a UV detector with an on/off ratio exceeding 104. Our results demonstrate a simple yet effective way to pattern semiconductor nanoparticles, facilitating the large-scale integration of functional nanomaterials into emerging flexible and robotic microdevices.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.