Innovative foam drying technique for salted egg yolk powder production.

IF 3.3 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Journal of the Science of Food and Agriculture Pub Date : 2024-11-09 DOI:10.1002/jsfa.14005
Ruipeng Ma, Xuhua Yang, Sijia Cui, Mohammed Obadi, Bin Xu, Jun Sun
{"title":"Innovative foam drying technique for salted egg yolk powder production.","authors":"Ruipeng Ma, Xuhua Yang, Sijia Cui, Mohammed Obadi, Bin Xu, Jun Sun","doi":"10.1002/jsfa.14005","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The powderization of salted egg yolks can circumvent the gelatinization issues that occur during frozen storage. In this study, salted egg yolk powder (SEYP) was prepared using microwave-assisted foam drying (MFD) technology.</p><p><strong>Results: </strong>The results show that, compared to traditional microwave drying and hot-air drying, the SEYP prepared by MFD exhibits a bright color and a loose structure, and shows significant improvements in emulsifying properties, lecithin retention rate and antioxidant activity (P < 0.05). The optimal microwave power for MFD of SEYP, established through principal component analysis, is 350 W, with no requirement for a cooking treatment of the salted egg yolks. Gas chromatography-mass spectrometry identified n-butanol, hexanal, nonanal, ethyl acetate, d-limonene and isopentanal as the primary volatile compounds in SEYP, contributing to its unique flavor profile. Furthermore, the SEYP prepared using MFD at 350 W also shows a reduction of 18.88% in the content of bitter-tasting amino acids compared with microwave drying.</p><p><strong>Conclusion: </strong>In summary, MFD technology is a green and efficient drying method suitable for the preparation of flavor-type SEYP. © 2024 Society of Chemical Industry.</p>","PeriodicalId":17725,"journal":{"name":"Journal of the Science of Food and Agriculture","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Science of Food and Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/jsfa.14005","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The powderization of salted egg yolks can circumvent the gelatinization issues that occur during frozen storage. In this study, salted egg yolk powder (SEYP) was prepared using microwave-assisted foam drying (MFD) technology.

Results: The results show that, compared to traditional microwave drying and hot-air drying, the SEYP prepared by MFD exhibits a bright color and a loose structure, and shows significant improvements in emulsifying properties, lecithin retention rate and antioxidant activity (P < 0.05). The optimal microwave power for MFD of SEYP, established through principal component analysis, is 350 W, with no requirement for a cooking treatment of the salted egg yolks. Gas chromatography-mass spectrometry identified n-butanol, hexanal, nonanal, ethyl acetate, d-limonene and isopentanal as the primary volatile compounds in SEYP, contributing to its unique flavor profile. Furthermore, the SEYP prepared using MFD at 350 W also shows a reduction of 18.88% in the content of bitter-tasting amino acids compared with microwave drying.

Conclusion: In summary, MFD technology is a green and efficient drying method suitable for the preparation of flavor-type SEYP. © 2024 Society of Chemical Industry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于咸蛋黄粉生产的创新型泡沫干燥技术。
背景:将咸蛋黄粉末化可以避免冷冻储存过程中出现的凝胶化问题。本研究采用微波辅助泡沫干燥(MFD)技术制备咸蛋黄粉(SEYP):结果表明,与传统的微波干燥和热风干燥相比,采用微波辅助泡沫干燥技术制备的咸蛋黄粉色泽鲜艳、结构疏松,在乳化性能、卵磷脂保留率和抗氧化活性(P 结论:微波辅助泡沫干燥技术是一种高效、低成本、低成本的技术:总之,MFD 技术是一种绿色高效的干燥方法,适用于制备风味型 SEYP。© 2024 化学工业协会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
4.90%
发文量
634
审稿时长
3.1 months
期刊介绍: The Journal of the Science of Food and Agriculture publishes peer-reviewed original research, reviews, mini-reviews, perspectives and spotlights in these areas, with particular emphasis on interdisciplinary studies at the agriculture/ food interface. Published for SCI by John Wiley & Sons Ltd. SCI (Society of Chemical Industry) is a unique international forum where science meets business on independent, impartial ground. Anyone can join and current Members include consumers, business people, environmentalists, industrialists, farmers, and researchers. The Society offers a chance to share information between sectors as diverse as food and agriculture, pharmaceuticals, biotechnology, materials, chemicals, environmental science and safety. As well as organising educational events, SCI awards a number of prestigious honours and scholarships each year, publishes peer-reviewed journals, and provides Members with news from their sectors in the respected magazine, Chemistry & Industry . Originally established in London in 1881 and in New York in 1894, SCI is a registered charity with Members in over 70 countries.
期刊最新文献
The use of heat-treated whey protein isolate as a natural emulsifier in fat-filled whey powder with a pre-emulsification process. A novel polysaccharide from Macadamia peel: Extraction, purification, structural characterization and antioxidant activity. Comparison of technological and physical properties of matcha powders of different geographical origins. Excellent quality acquisition of myofibrillar protein in red shrimp (Solenocera crassicornis) based on regulating the oxidation degree of atmospheric cold plasma treatment. Dynamic changes in proanthocyanidin composition, biosynthesis, and histochemistry in spine grape (Vitis davidii Foëx) tissues during berry development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1