{"title":"Morphology of the human inner ear and vestibulocochlear nerve assessed using 7 T MRI.","authors":"Kingkarn Aphiwatthanasumet, Ketan Jethwa, Paul Glover, Gerard O'Donoghue, Dorothee Auer, Penny Gowland","doi":"10.1007/s10334-024-01213-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To optimize high-resolution 7 T MRI of the cochlea and measure normal cochlea and the cochlear nerve morphometry in vivo.</p><p><strong>Materials and methods: </strong>Eight volunteers with normal hearing were scanned at 7 T using an optimized protocol. Two neuroradiologists independently scored image quality. The basal turn lumen diameter (BTLD), height, width, length and volume of the cochlear, long (LD) and short (SD) diameter the calculated cross-sectional area (CSA) of the cochlear nerve were measured. Intra and inter-observer reliability was assessed using intraclass correlation (ICC).</p><p><strong>Results: </strong>3D T2W DRIVE combined with dielectric pads, allowed acquisition of high-resolution images showing detailed structures, such as the crista ampullaris in the semicircular canals. The overall grading scores from neuroradiologists were excellent. In the left ear, averaging over all subjects gave BTLD of 2.6 ± 0.05 mm, height of 4.9 ± 0.1 mm, width of 4.4 ± 0.2 mm, length of 36.5 ± 0.4 mm, volume of 0.16 ± 0.02 ml, LD of 1.31 ± 0.1 mm, SD of 1.06 ± 0.1 mm, and CSA of 1.1 ± 0.1 mm<sup>2</sup>. The right ear gave BTLD of 2.6 ± 0.04 mm, height of 4.9 ± 0.1 mm, width of 4.4 ± 0.3 mm, length of 35.5 ± 0.4 mm, volume of 0.16 ± 0.02 ml, LD of 1.29 ± 0.1 mm, SD of 1.07 ± 0.1 mm, and CSA of 1.10 ± 0.2 mm<sup>2</sup>. No statistically significant difference was found between the sides of the head (p-value > 0.05). The intra-observer reliability was high (0.77-0.94), while the inter-observer reliability varied from moderate to high (0.55-0.81).</p><p><strong>Conclusion: </strong>7 T MRI can provide excellent visualization of the internal structure of the cochlear and of the vestibulocochlear nerve in vivo.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01213-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To optimize high-resolution 7 T MRI of the cochlea and measure normal cochlea and the cochlear nerve morphometry in vivo.
Materials and methods: Eight volunteers with normal hearing were scanned at 7 T using an optimized protocol. Two neuroradiologists independently scored image quality. The basal turn lumen diameter (BTLD), height, width, length and volume of the cochlear, long (LD) and short (SD) diameter the calculated cross-sectional area (CSA) of the cochlear nerve were measured. Intra and inter-observer reliability was assessed using intraclass correlation (ICC).
Results: 3D T2W DRIVE combined with dielectric pads, allowed acquisition of high-resolution images showing detailed structures, such as the crista ampullaris in the semicircular canals. The overall grading scores from neuroradiologists were excellent. In the left ear, averaging over all subjects gave BTLD of 2.6 ± 0.05 mm, height of 4.9 ± 0.1 mm, width of 4.4 ± 0.2 mm, length of 36.5 ± 0.4 mm, volume of 0.16 ± 0.02 ml, LD of 1.31 ± 0.1 mm, SD of 1.06 ± 0.1 mm, and CSA of 1.1 ± 0.1 mm2. The right ear gave BTLD of 2.6 ± 0.04 mm, height of 4.9 ± 0.1 mm, width of 4.4 ± 0.3 mm, length of 35.5 ± 0.4 mm, volume of 0.16 ± 0.02 ml, LD of 1.29 ± 0.1 mm, SD of 1.07 ± 0.1 mm, and CSA of 1.10 ± 0.2 mm2. No statistically significant difference was found between the sides of the head (p-value > 0.05). The intra-observer reliability was high (0.77-0.94), while the inter-observer reliability varied from moderate to high (0.55-0.81).
Conclusion: 7 T MRI can provide excellent visualization of the internal structure of the cochlear and of the vestibulocochlear nerve in vivo.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.