{"title":"Deformation Performance of Longitudinal Non-Uniformly Corroded Reinforced Concrete Columns.","authors":"Guoyao Sun, Huanjun Jiang","doi":"10.3390/ma17215303","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the complexity of the marine corrosive environment, the rebar corrosion in reinforced concrete (RC) bridge piers is usually longitudinal non-uniform. However, the study on the mechanical behavior of longitudinal non-uniformly corroded RC structural members is very limited. To systematically study the deformation performance of the longitudinal non-uniformly corroded RC columns, the finite element models of 106 RC columns with different parameters were established using the commercial software ABAQUS 2016. The effects of the height of the bottom section (represented in the text by the variable \"position\"), the length, and the rebar corrosion ratio of the corroded segment on the deformation performance of the longitudinal non-uniformly corroded RC columns were analyzed. It is found that the change in the position of the corroded segment on the column may change the most unfavorable section of the column and the failure mode. The length of the corroded segment significantly affects the yield deformation. The ultimate plastic deformation increases with the increase of position or length of the corroded segment. With the increase of rebar corrosion ratio of the corroded segment, the ultimate plastic deformation decreases.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547729/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215303","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the complexity of the marine corrosive environment, the rebar corrosion in reinforced concrete (RC) bridge piers is usually longitudinal non-uniform. However, the study on the mechanical behavior of longitudinal non-uniformly corroded RC structural members is very limited. To systematically study the deformation performance of the longitudinal non-uniformly corroded RC columns, the finite element models of 106 RC columns with different parameters were established using the commercial software ABAQUS 2016. The effects of the height of the bottom section (represented in the text by the variable "position"), the length, and the rebar corrosion ratio of the corroded segment on the deformation performance of the longitudinal non-uniformly corroded RC columns were analyzed. It is found that the change in the position of the corroded segment on the column may change the most unfavorable section of the column and the failure mode. The length of the corroded segment significantly affects the yield deformation. The ultimate plastic deformation increases with the increase of position or length of the corroded segment. With the increase of rebar corrosion ratio of the corroded segment, the ultimate plastic deformation decreases.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.