Laura M. Buchwald , Ditte Neess , Daniel Hansen , Thomas K. Doktor , Vignesh Ramesh , Lasse B. Steffensen , Blagoy Blagoev , David W. Litchfield , Brage S. Andresen , Kim Ravnskjaer , Nils J. Færgeman , Barbara Guerra
{"title":"Body weight control via protein kinase CK2: diet-induced obesity counteracted by pharmacological targeting","authors":"Laura M. Buchwald , Ditte Neess , Daniel Hansen , Thomas K. Doktor , Vignesh Ramesh , Lasse B. Steffensen , Blagoy Blagoev , David W. Litchfield , Brage S. Andresen , Kim Ravnskjaer , Nils J. Færgeman , Barbara Guerra","doi":"10.1016/j.metabol.2024.156060","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Protein kinase CK2 is a highly conserved enzyme implicated in the pathogenesis of various human illnesses including obesity. Despite compelling evidence for the involvement of this kinase in the pathophysiology of obesity, the molecular mechanisms by which CK2 might regulate fat metabolism are still poorly understood.</div></div><div><h3>Methods and results</h3><div>In this study, we aimed to elucidate the role of CK2 on lipid metabolism by employing both <em>in vitro</em> and <em>in vivo</em> approaches using mouse pre-adipocytes and a mouse model of diet-induced obesity. We show that pharmacological inhibition of CK2 by CX-4945 results in premature upregulation of p27<sup>KIP1</sup> preventing the progression of cells into mature adipocytes by arresting their development at the intermediate phase of adipogenic differentiation. Consistent with this, we show that <em>in vivo</em>, CK2 regulates the expression levels and ERK-mediated phosphorylation of C/EBPβ, which is one of the earliest transcription factors responsive to adipogenic stimuli. Furthermore, we demonstrate the functional implication of CK2 in the expression of late markers of adipogenesis and factors regulating lipogenesis in liver and white adipose tissue. Finally, we show that while mice subjected to high-fat diet increased their body weight, those additionally treated with CX-4945 gained considerably less weight. NMR-based body composition analysis revealed that this is linked to significant differences in body fat mass.</div></div><div><h3>Conclusions</h3><div>Taken together, our study provides novel insights into the role of CK2 in fat metabolism in response to chronic lipid overload and confirms CK2 pharmacological targeting as a potentially powerful strategy for body weight control and/or the treatment of obesity and related metabolic disorders.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"162 ","pages":"Article 156060"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026049524002889","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Protein kinase CK2 is a highly conserved enzyme implicated in the pathogenesis of various human illnesses including obesity. Despite compelling evidence for the involvement of this kinase in the pathophysiology of obesity, the molecular mechanisms by which CK2 might regulate fat metabolism are still poorly understood.
Methods and results
In this study, we aimed to elucidate the role of CK2 on lipid metabolism by employing both in vitro and in vivo approaches using mouse pre-adipocytes and a mouse model of diet-induced obesity. We show that pharmacological inhibition of CK2 by CX-4945 results in premature upregulation of p27KIP1 preventing the progression of cells into mature adipocytes by arresting their development at the intermediate phase of adipogenic differentiation. Consistent with this, we show that in vivo, CK2 regulates the expression levels and ERK-mediated phosphorylation of C/EBPβ, which is one of the earliest transcription factors responsive to adipogenic stimuli. Furthermore, we demonstrate the functional implication of CK2 in the expression of late markers of adipogenesis and factors regulating lipogenesis in liver and white adipose tissue. Finally, we show that while mice subjected to high-fat diet increased their body weight, those additionally treated with CX-4945 gained considerably less weight. NMR-based body composition analysis revealed that this is linked to significant differences in body fat mass.
Conclusions
Taken together, our study provides novel insights into the role of CK2 in fat metabolism in response to chronic lipid overload and confirms CK2 pharmacological targeting as a potentially powerful strategy for body weight control and/or the treatment of obesity and related metabolic disorders.
期刊介绍:
Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism.
Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential.
The journal addresses a range of topics, including:
- Energy Expenditure and Obesity
- Metabolic Syndrome, Prediabetes, and Diabetes
- Nutrition, Exercise, and the Environment
- Genetics and Genomics, Proteomics, and Metabolomics
- Carbohydrate, Lipid, and Protein Metabolism
- Endocrinology and Hypertension
- Mineral and Bone Metabolism
- Cardiovascular Diseases and Malignancies
- Inflammation in metabolism and immunometabolism