Fractal Modelling of Heterogeneous Catalytic Materials and Processes.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL Materials Pub Date : 2024-11-01 DOI:10.3390/ma17215363
Suleiman Mousa, Sean P Rigby
{"title":"Fractal Modelling of Heterogeneous Catalytic Materials and Processes.","authors":"Suleiman Mousa, Sean P Rigby","doi":"10.3390/ma17215363","DOIUrl":null,"url":null,"abstract":"<p><p>This review considers the use of fractal concepts to improve the development, fabrication, and characterisation of catalytic materials and supports. First, the theory of fractals is discussed, as well as how it can be used to better describe often highly complex catalytic materials and enhance structural characterisation via a variety of different methods, including gas sorption, mercury porosimetry, NMR, and several imaging modalities. The review then surveys various synthesis and fabrication methods that can be used to create catalytic materials that are fractals or possess fractal character. It then goes on to consider how the fractal properties of catalysts affect their performance, especially their overall activity, selectivity for desired products, and resistance to deactivation. Finally, this review describes how the optimum fractal catalyst material for a given reaction system can be designed on a computer.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547907/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215363","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This review considers the use of fractal concepts to improve the development, fabrication, and characterisation of catalytic materials and supports. First, the theory of fractals is discussed, as well as how it can be used to better describe often highly complex catalytic materials and enhance structural characterisation via a variety of different methods, including gas sorption, mercury porosimetry, NMR, and several imaging modalities. The review then surveys various synthesis and fabrication methods that can be used to create catalytic materials that are fractals or possess fractal character. It then goes on to consider how the fractal properties of catalysts affect their performance, especially their overall activity, selectivity for desired products, and resistance to deactivation. Finally, this review describes how the optimum fractal catalyst material for a given reaction system can be designed on a computer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异相催化材料和过程的分形建模。
本综述探讨了如何利用分形概念来改进催化材料和支撑物的开发、制造和表征。首先讨论了分形理论,以及如何利用该理论更好地描述通常非常复杂的催化材料,并通过各种不同的方法(包括气体吸附、汞孔模拟、核磁共振和多种成像模式)加强结构表征。综述随后介绍了各种合成和制造方法,这些方法可用于制造分形或具有分形特征的催化材料。然后,本综述将探讨催化剂的分形特性如何影响其性能,尤其是催化剂的整体活性、对所需产物的选择性以及抗失活能力。最后,本综述介绍了如何在计算机上设计出特定反应体系的最佳分形催化剂材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
期刊最新文献
Accelerating Discontinuous Precipitation to Increase Strength by Pre-Deformation in Cu-Ni-Si Alloys. Effect of Dehydrogenation and Heat Treatments on the Microstructure and Tribological Behavior of Electroless Ni-P Nanocomposite Coatings. Multiple Preheating Processes for Suppressing Liquefaction Cracks in IN738LC Superalloy Fabricated by Electron Beam Powder Bed Fusion (EB-PBF). Effect of Flax By-Products on the Mechanical and Cracking Behaviors of Expansive Soil. Multiscale Modeling of Nanoparticle Precipitation in Oxide Dispersion-Strengthened Steels Produced by Laser Powder Bed Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1