Zhuldyz Sagdoldina, Marcin Kot, Daryn Baizhan, Dastan Buitkenov, Laila Sulyubayeva
{"title":"Influence of Detonation Spraying Parameters on the Microstructure and Mechanical Properties of Hydroxyapatite Coatings.","authors":"Zhuldyz Sagdoldina, Marcin Kot, Daryn Baizhan, Dastan Buitkenov, Laila Sulyubayeva","doi":"10.3390/ma17215390","DOIUrl":null,"url":null,"abstract":"<p><p>The process of osteointegration depends significantly on the surface roughness, structure, chemical composition, and mechanical characteristics of the coating. In this regard, an important direction in the development of medical materials is the development of new techniques of surface modification and the creation of bioactive ceramic coatings. Calcium-phosphate materials based on hydroxyapatite have been proposed as bioactive ceramic coatings on titanium implants for the effective acceleration of bone tissue healing. To obtain bioactive ceramic coatings, pulse power sources are best suited, namely detonation spraying, in which the energy of the explosion of gas mixtures is used as a source of pulse action. The pulse mode of operation in the detonation spraying method is preferable for the formation of bioactive ceramic coatings. It provides a high velocity of hydroxyapatite particles, which promotes their effective fixation on the titanium substrate, while minimizing the heating of the material. This approach preserves the substrate structure and improves the coating adhesion. Four different types of coatings with varying O<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> molar ratios, ranging from 2.6 to 3.7, were obtained using detonation spraying. Powders and obtained coatings of hydroxyapatite were studied by Raman spectroscopy and XRD structural analysis. The results of XRD phase analysis showed the partial conversion of the hydroxyapatite phase to the α-tricalcium phosphate (α-TCP) phase during the detonation spraying process. The results obtained by Raman spectroscopy indicate that hydroxyapatite is the main phase in coatings. All hydroxyapatite-based coatings exhibited hydrophobic properties, which was confirmed by contact-angle values above 90° in wettability tests, characteristic of hydrophobic surfaces. The adhesive strength of the coatings was measured by the scratch test method. Tribological tests were conducted using the ball-on-disk method under both dry conditions and in Ringer's solution. This approach enabled the evaluation of wear resistance and friction coefficient of the coatings in different environments, simulating both lubrication-free conditions and those resembling physiological environments.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547398/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215390","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The process of osteointegration depends significantly on the surface roughness, structure, chemical composition, and mechanical characteristics of the coating. In this regard, an important direction in the development of medical materials is the development of new techniques of surface modification and the creation of bioactive ceramic coatings. Calcium-phosphate materials based on hydroxyapatite have been proposed as bioactive ceramic coatings on titanium implants for the effective acceleration of bone tissue healing. To obtain bioactive ceramic coatings, pulse power sources are best suited, namely detonation spraying, in which the energy of the explosion of gas mixtures is used as a source of pulse action. The pulse mode of operation in the detonation spraying method is preferable for the formation of bioactive ceramic coatings. It provides a high velocity of hydroxyapatite particles, which promotes their effective fixation on the titanium substrate, while minimizing the heating of the material. This approach preserves the substrate structure and improves the coating adhesion. Four different types of coatings with varying O2/C2H2 molar ratios, ranging from 2.6 to 3.7, were obtained using detonation spraying. Powders and obtained coatings of hydroxyapatite were studied by Raman spectroscopy and XRD structural analysis. The results of XRD phase analysis showed the partial conversion of the hydroxyapatite phase to the α-tricalcium phosphate (α-TCP) phase during the detonation spraying process. The results obtained by Raman spectroscopy indicate that hydroxyapatite is the main phase in coatings. All hydroxyapatite-based coatings exhibited hydrophobic properties, which was confirmed by contact-angle values above 90° in wettability tests, characteristic of hydrophobic surfaces. The adhesive strength of the coatings was measured by the scratch test method. Tribological tests were conducted using the ball-on-disk method under both dry conditions and in Ringer's solution. This approach enabled the evaluation of wear resistance and friction coefficient of the coatings in different environments, simulating both lubrication-free conditions and those resembling physiological environments.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.