Abscisic acid-, stress-, ripening-induced 2 like protein, TaASR2L, promotes wheat resistance to stripe rust.

IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Molecular plant pathology Pub Date : 2024-11-01 DOI:10.1111/mpp.70028
Qiao Wang, Yaqi Tang, Ying Li, Jun Ren, Hongxu Zuo, Peng Cheng, Qiang Li, Baotong Wang
{"title":"Abscisic acid-, stress-, ripening-induced 2 like protein, TaASR2L, promotes wheat resistance to stripe rust.","authors":"Qiao Wang, Yaqi Tang, Ying Li, Jun Ren, Hongxu Zuo, Peng Cheng, Qiang Li, Baotong Wang","doi":"10.1111/mpp.70028","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive wheat diseases. The plant hormone abscisic acid (ABA) plays a key regulatory role in plant response to stress. ABA-, stress-, ripening-induced proteins (ASR) have been shown to be abundantly induced in response to biotic and abiotic stresses to protect plants from damage. However, the function of wheat ASR2-like protein (TaASR2L) in plants under biotic stress remains unclear. In this study, transient silencing of TaASR2L using a virus-induced gene silencing system substantially reduced wheat resistance to Pst. TaASR2L interaction with serine/arginine-rich splicing factor SR30-like (TaSR30) was validated mainly in the nucleus. Knockdown of TaSR30 expression substantially reduced wheat resistance to Pst. Overexpression of TaASR2L and TaSR30 demonstrated that they can promote the expression of ABA- and resistance-related genes to enhance wheat resistance to Pst. In addition, the expression levels of TaSR30 and TaASR2L were substantially increased by exogenous ABA, and the resistance of wheat to Pst was increased, and the expression of PR genes was induced. Therefore, these results suggest that TaASR2L interacts with TaSR30 by promoting PR genes expression and enhancing wheat resistance to Pst.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 11","pages":"e70028"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551255/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70028","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive wheat diseases. The plant hormone abscisic acid (ABA) plays a key regulatory role in plant response to stress. ABA-, stress-, ripening-induced proteins (ASR) have been shown to be abundantly induced in response to biotic and abiotic stresses to protect plants from damage. However, the function of wheat ASR2-like protein (TaASR2L) in plants under biotic stress remains unclear. In this study, transient silencing of TaASR2L using a virus-induced gene silencing system substantially reduced wheat resistance to Pst. TaASR2L interaction with serine/arginine-rich splicing factor SR30-like (TaSR30) was validated mainly in the nucleus. Knockdown of TaSR30 expression substantially reduced wheat resistance to Pst. Overexpression of TaASR2L and TaSR30 demonstrated that they can promote the expression of ABA- and resistance-related genes to enhance wheat resistance to Pst. In addition, the expression levels of TaSR30 and TaASR2L were substantially increased by exogenous ABA, and the resistance of wheat to Pst was increased, and the expression of PR genes was induced. Therefore, these results suggest that TaASR2L interacts with TaSR30 by promoting PR genes expression and enhancing wheat resistance to Pst.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脱落酸、胁迫、成熟诱导的 2 类蛋白 TaASR2L 促进小麦对条锈病的抗性。
由 Puccinia striiformis f. sp. tritici(Pst)引起的小麦条锈病是最具破坏性的小麦病害之一。植物激素脱落酸(ABA)在植物对胁迫的反应中起着关键的调节作用。研究表明,ABA、胁迫、成熟诱导蛋白(ASR)在生物和非生物胁迫下被大量诱导,以保护植物免受损害。然而,小麦 ASR2 样蛋白(TaASR2L)在植物生物胁迫下的功能仍不清楚。本研究利用病毒诱导的基因沉默系统瞬时沉默 TaASR2L,大大降低了小麦对 Pst.TaASR2L与富含丝氨酸/精氨酸的剪接因子SR30-like(TaSR30)的相互作用主要在细胞核中得到了验证。敲除 TaSR30 的表达大大降低了小麦对 Pst 的抗性。过表达 TaASR2L 和 TaSR30 表明,它们能促进 ABA 和抗性相关基因的表达,从而增强小麦对 Pst 的抗性。此外,在外源 ABA 的作用下,TaSR30 和 TaASR2L 的表达水平大幅提高,小麦对 Pst 的抗性增强,PR 基因的表达也被诱导。因此,这些结果表明 TaASR2L 与 TaSR30 相互作用,促进 PR 基因的表达,增强小麦对 Pst 的抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular plant pathology
Molecular plant pathology 生物-植物科学
CiteScore
9.40
自引率
4.10%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.
期刊最新文献
Herbicides as fungicides: Targeting heme biosynthesis in the maize pathogen Ustilago maydis. The Phytophthora infestans effector Pi05910 suppresses and destabilizes host glycolate oxidase StGOX4 to promote plant susceptibility. A novel protein elicitor (Cs08297) from Ciboria shiraiana enhances plant disease resistance. Flg22-facilitated PGPR colonization in root tips and control of root rot. A single phosphorylatable amino acid residue is essential for the recognition of multiple potyviral HCPro effectors by potato Nytbr.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1