Sang-Min Park, Keeok Haam, Haejeong Heo, Doyeong Kim, Min-Ju Kim, Hyo-Jung Jung, Seongwon Cha, Mirang Kim, Haeseung Lee
{"title":"Integrative transcriptomic analysis identifies emetine as a promising candidate for overcoming acquired resistance to ALK inhibitors in lung cancer.","authors":"Sang-Min Park, Keeok Haam, Haejeong Heo, Doyeong Kim, Min-Ju Kim, Hyo-Jung Jung, Seongwon Cha, Mirang Kim, Haeseung Lee","doi":"10.1002/1878-0261.13738","DOIUrl":null,"url":null,"abstract":"<p><p>Anaplastic lymphoma kinase (ALK; also known as ALK tyrosine kinase receptor) inhibitors (ALKi) are effective in treating lung cancer patients with chromosomal rearrangement of ALK. However, continuous treatment with ALKis invariably leads to acquired resistance in cancer cells. In this study, we propose an efficient strategy to suppress ALKi resistance through a meta-analysis of transcriptome data from various cell models of acquired resistance to ALKis. We systematically identified gene signatures that consistently showed altered expression during the development of resistance and conducted computational drug screening using these signatures. We identified emetine as a promising candidate compound to inhibit the growth of ALKi-resistant cells. We demonstrated that emetine exhibited effectiveness in inhibiting the growth of ALKi-resistant cells, and further interpreted its impact on the resistant signatures through drug-induced RNA-sequencing data. Our transcriptome-guided systematic approach paves the way for efficient drug discovery to overcome acquired resistance to cancer therapy.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13738","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Anaplastic lymphoma kinase (ALK; also known as ALK tyrosine kinase receptor) inhibitors (ALKi) are effective in treating lung cancer patients with chromosomal rearrangement of ALK. However, continuous treatment with ALKis invariably leads to acquired resistance in cancer cells. In this study, we propose an efficient strategy to suppress ALKi resistance through a meta-analysis of transcriptome data from various cell models of acquired resistance to ALKis. We systematically identified gene signatures that consistently showed altered expression during the development of resistance and conducted computational drug screening using these signatures. We identified emetine as a promising candidate compound to inhibit the growth of ALKi-resistant cells. We demonstrated that emetine exhibited effectiveness in inhibiting the growth of ALKi-resistant cells, and further interpreted its impact on the resistant signatures through drug-induced RNA-sequencing data. Our transcriptome-guided systematic approach paves the way for efficient drug discovery to overcome acquired resistance to cancer therapy.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.