Kamil Myszczynski, Joanna Szuszkiewicz, Kamil Krawczynski, Małgorzata Sikora, Marta Romaniewicz, Maria M Guzewska, Piotr Zabielski, Monika M Kaczmarek
{"title":"In-depth analysis of miRNA binding sites reveals the complex response of uterine epithelium to miR-26a-5p and miR-125b-5p during early pregnancy.","authors":"Kamil Myszczynski, Joanna Szuszkiewicz, Kamil Krawczynski, Małgorzata Sikora, Marta Romaniewicz, Maria M Guzewska, Piotr Zabielski, Monika M Kaczmarek","doi":"10.1016/j.mcpro.2024.100879","DOIUrl":null,"url":null,"abstract":"<p><p>Post-transcriptional regulation of gene expression by miRNAs likely makes significant contributions to mRNA abundance at the embryo-maternal interface. In this study, we investigated how miR-26a-5p and miR-125b-5p contribute to molecular changes occurring in the uterine luminal epithelium, which serves as the first site of signal exchange between the mother and developing embryo. To measure de novo protein synthesis after miRNA delivery to primary uterine luminal epithelial cells, we employed pulsed stable isotope labeling by amino acids (pSILAC). We found that both miRNAs alter the proteome of luminal epithelial cells, impacting numerous cellular functions, immune responses, as well as intracellular and second messenger signaling pathways. Additionally, we identified several features of miRNA-mRNA interactions that may influence the targeting efficiency of miR-26a-5p and miR-125b-5p. Overall, our study suggests a complex interaction of miR-26a-5p and miR-125b-5p with their respective targets. However, both appear to cooperatively function in modulating the cellular environment of the luminal epithelium, facilitating the morphological and molecular changes that occur during the intensive communication between the embryo and uterus at pregnancy.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100879"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100879","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Post-transcriptional regulation of gene expression by miRNAs likely makes significant contributions to mRNA abundance at the embryo-maternal interface. In this study, we investigated how miR-26a-5p and miR-125b-5p contribute to molecular changes occurring in the uterine luminal epithelium, which serves as the first site of signal exchange between the mother and developing embryo. To measure de novo protein synthesis after miRNA delivery to primary uterine luminal epithelial cells, we employed pulsed stable isotope labeling by amino acids (pSILAC). We found that both miRNAs alter the proteome of luminal epithelial cells, impacting numerous cellular functions, immune responses, as well as intracellular and second messenger signaling pathways. Additionally, we identified several features of miRNA-mRNA interactions that may influence the targeting efficiency of miR-26a-5p and miR-125b-5p. Overall, our study suggests a complex interaction of miR-26a-5p and miR-125b-5p with their respective targets. However, both appear to cooperatively function in modulating the cellular environment of the luminal epithelium, facilitating the morphological and molecular changes that occur during the intensive communication between the embryo and uterus at pregnancy.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes