Dener Lucas Araújo Dos Santos, Juliana Santana de Curcio, Evandro Novaes, Célia Maria de Almeida Soares
{"title":"miRNAs Regulate the Metabolic Adaptation of Paracoccidioides brasiliensis during Copper Deprivation.","authors":"Dener Lucas Araújo Dos Santos, Juliana Santana de Curcio, Evandro Novaes, Célia Maria de Almeida Soares","doi":"10.1016/j.micinf.2024.105435","DOIUrl":null,"url":null,"abstract":"<p><p>Copper is an essential metal for cellular processes such as detoxification of reactive oxygen species, oxidative phosphorylation, and iron uptake. However, during infection, the host restricts the bioavailability of this micronutrient to the pathogen as a strategy to combat infection. Recently, we have shown the involvement of miRNAs as an adaptive strategy of P. brasiliensis upon metal deprivation such as iron and zinc. However, their role in copper limitation still needs to be elucidated. Our objective was to characterize the expression profile of miRNAs regulated during copper deprivation in P. brasiliensis and the putative altered processes. Through RNAseq analysis and bioinformatics, we identified 14 differentially expressed miRNAs, two of which putatively regulated oxidative stress response, beta-oxidation, glyoxylate cycle, and cell wall remodeling. Our results suggest that metabolic adaptations carried out by P. brasiliensis in copper deprivation are regulated by miRNAs.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.micinf.2024.105435","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Copper is an essential metal for cellular processes such as detoxification of reactive oxygen species, oxidative phosphorylation, and iron uptake. However, during infection, the host restricts the bioavailability of this micronutrient to the pathogen as a strategy to combat infection. Recently, we have shown the involvement of miRNAs as an adaptive strategy of P. brasiliensis upon metal deprivation such as iron and zinc. However, their role in copper limitation still needs to be elucidated. Our objective was to characterize the expression profile of miRNAs regulated during copper deprivation in P. brasiliensis and the putative altered processes. Through RNAseq analysis and bioinformatics, we identified 14 differentially expressed miRNAs, two of which putatively regulated oxidative stress response, beta-oxidation, glyoxylate cycle, and cell wall remodeling. Our results suggest that metabolic adaptations carried out by P. brasiliensis in copper deprivation are regulated by miRNAs.
期刊介绍:
Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular:
the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms.
the immune response to infection, including pathogenesis and host susceptibility.
emerging human infectious diseases.
systems immunology.
molecular epidemiology/genetics of host pathogen interactions.
microbiota and host "interactions".
vaccine development, including novel strategies and adjuvants.
Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal.
Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.