TGEV nonstructural protein ORF3b upregulates the expression of SLA-DR at the transcriptional level in monocyte-derived porcine dendritic cells.

IF 2.6 4区 医学 Q3 IMMUNOLOGY Microbes and Infection Pub Date : 2024-11-12 DOI:10.1016/j.micinf.2024.105437
Hang Liu, Mengyao Ma, Xinhao Jia, Mengwei Qian, Bo Pang, Muzi Li, Honglei Zhang, Shijie Ma, Lanlan Zheng
{"title":"TGEV nonstructural protein ORF3b upregulates the expression of SLA-DR at the transcriptional level in monocyte-derived porcine dendritic cells.","authors":"Hang Liu, Mengyao Ma, Xinhao Jia, Mengwei Qian, Bo Pang, Muzi Li, Honglei Zhang, Shijie Ma, Lanlan Zheng","doi":"10.1016/j.micinf.2024.105437","DOIUrl":null,"url":null,"abstract":"<p><p>Transmissible gastroenteritis virus (TGEV) is a porcine intestinal pathogenic coronavirus that can cause acute intestinal diseases in pigs, especially in suckling piglets under two weeks of age, with a mortality rate of 100%. Dendritic cells (DCs) are important antigen-presenting cells (APCs) that are essential for the initiation and modulation of immune responses in animals. In this study, we used monocyte-derived porcine DCs as an in vitro model of APCs to further study the pathogenic mechanism of TGEV. Our results demonstrated that TGEV successfully replicates in monocyte-derived porcine DCs, whereas UV-inactivated TGEV failed to infect these cells. Importantly, TGEV infection of DCs led to significant upregulation of swine leukocyte antigen II DR (SLA-DR), a key molecule in the major histocompatibility complex class II (MHC-II) family. We further demonstrated that the ORF3b nonstructural protein of TGEV significantly enhances SLA-DR expression at the transcriptional level in porcine DCs. This study provides new insights into the pathogenic mechanisms of TGEV.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.micinf.2024.105437","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transmissible gastroenteritis virus (TGEV) is a porcine intestinal pathogenic coronavirus that can cause acute intestinal diseases in pigs, especially in suckling piglets under two weeks of age, with a mortality rate of 100%. Dendritic cells (DCs) are important antigen-presenting cells (APCs) that are essential for the initiation and modulation of immune responses in animals. In this study, we used monocyte-derived porcine DCs as an in vitro model of APCs to further study the pathogenic mechanism of TGEV. Our results demonstrated that TGEV successfully replicates in monocyte-derived porcine DCs, whereas UV-inactivated TGEV failed to infect these cells. Importantly, TGEV infection of DCs led to significant upregulation of swine leukocyte antigen II DR (SLA-DR), a key molecule in the major histocompatibility complex class II (MHC-II) family. We further demonstrated that the ORF3b nonstructural protein of TGEV significantly enhances SLA-DR expression at the transcriptional level in porcine DCs. This study provides new insights into the pathogenic mechanisms of TGEV.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TGEV非结构蛋白ORF3b可在转录水平上上调单核细胞衍生猪树突状细胞中SLA-DR的表达。
传染性胃肠炎病毒(TGEV)是一种猪肠道致病性冠状病毒,可引起猪的急性肠道疾病,尤其是两周龄以下的哺乳仔猪,死亡率高达 100%。树突状细胞(DC)是重要的抗原递呈细胞(APC),对动物免疫反应的启动和调节至关重要。在本研究中,我们使用单核细胞衍生的猪 DCs 作为体外 APCs 模型,进一步研究 TGEV 的致病机制。我们的研究结果表明,TGEV 能在单核细胞衍生的猪 DCs 中成功复制,而紫外线灭活的 TGEV 却不能感染这些细胞。重要的是,TGEV 感染 DCs 会导致猪白细胞抗原 II DR(SLA-DR)显著上调,而猪白细胞抗原 II DR 是主要组织相容性复合体 II 类(MHC-II)家族中的一个关键分子。我们进一步证实,TGEV 的 ORF3b 非结构蛋白在转录水平上显著增强了猪 DCs 中 SLA-DR 的表达。这项研究为了解 TGEV 的致病机制提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbes and Infection
Microbes and Infection 医学-病毒学
CiteScore
12.60
自引率
1.70%
发文量
90
审稿时长
40 days
期刊介绍: Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular: the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms. the immune response to infection, including pathogenesis and host susceptibility. emerging human infectious diseases. systems immunology. molecular epidemiology/genetics of host pathogen interactions. microbiota and host "interactions". vaccine development, including novel strategies and adjuvants. Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal. Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.
期刊最新文献
Nano-Enhanced Benzylpenicillin: Bridging Antibacterial Action with Anti-Inflammatory Potential against Antibiotic-Resistant Bacteria. TGEV nonstructural protein ORF3b upregulates the expression of SLA-DR at the transcriptional level in monocyte-derived porcine dendritic cells. Bad company? The pericardium microbiome in people investigated for tuberculous pericarditis in an HIV-prevalent setting. miRNAs Regulate the Metabolic Adaptation of Paracoccidioides brasiliensis during Copper Deprivation. Intranasal immunization with poly I:C and CpG ODN adjuvants enhances the protective efficacy against Helicobacter pylori infection in mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1