{"title":"High expression of ADAR mediated by OGT promotes chemoresistance in colorectal cancer through the A-to-I editing pathway.","authors":"Tingting Liu, Wanyu Ji, Yong Wang, Ying Zhang, Qinglei Hang, Feng Qi","doi":"10.1007/s00438-024-02197-4","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a malignant tumor with poor prognosis and adverse therapeutic effect. The study aims to elucidate the contribution of OGT-mediated glycosylation of ADAR to chemoresistance in CRC through its role and regulatory mechanisms. Variations in OGT expression levels and their impact on CRC cell chemoresistance were investigated using gain-of-function and loss-of-function assays. Through a series of molecular biology experiments, we confirmed that ADAR is the downstream target of OGT regulation, emphasizing the role of OGT-mediated glycosylation in stabilizing ADAR. Furthermore, RNA immunoprecipitation (RIP) assays were conducted to examine the effects of ADAR-mediated A-to-I editing on the mRNA stability and translation of genes associated with DNA damage repair. Elevated OGT expression was found to enhance CRC's malignancy and resistance to chemotherapy. OGT's influence leads to the glycosylation of ADAR, thereby increasing its protein levels. ADAR, through its role in A-to-I editing, modulates the mRNA editing of genes implicated in DNA damage repair. This regulation enhances the expression of these genes, improves DNA repair capabilities, and ultimately, fosters chemoresistance in CRC cells. In conclusion, ADAR promotes PARP1 expression under the positive regulation of OGT-mediated O-glycosylation modification to enhance drug resistance in COAD cells. It provides the research basis for overcoming the drug resistance of CRC.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-024-02197-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) is a malignant tumor with poor prognosis and adverse therapeutic effect. The study aims to elucidate the contribution of OGT-mediated glycosylation of ADAR to chemoresistance in CRC through its role and regulatory mechanisms. Variations in OGT expression levels and their impact on CRC cell chemoresistance were investigated using gain-of-function and loss-of-function assays. Through a series of molecular biology experiments, we confirmed that ADAR is the downstream target of OGT regulation, emphasizing the role of OGT-mediated glycosylation in stabilizing ADAR. Furthermore, RNA immunoprecipitation (RIP) assays were conducted to examine the effects of ADAR-mediated A-to-I editing on the mRNA stability and translation of genes associated with DNA damage repair. Elevated OGT expression was found to enhance CRC's malignancy and resistance to chemotherapy. OGT's influence leads to the glycosylation of ADAR, thereby increasing its protein levels. ADAR, through its role in A-to-I editing, modulates the mRNA editing of genes implicated in DNA damage repair. This regulation enhances the expression of these genes, improves DNA repair capabilities, and ultimately, fosters chemoresistance in CRC cells. In conclusion, ADAR promotes PARP1 expression under the positive regulation of OGT-mediated O-glycosylation modification to enhance drug resistance in COAD cells. It provides the research basis for overcoming the drug resistance of CRC.
结直肠癌(CRC)是一种预后不良、治疗效果不佳的恶性肿瘤。本研究旨在通过OGT的作用和调控机制,阐明OGT介导的ADAR糖基化对CRC化疗耐药性的贡献。通过功能增益和功能缺失实验研究了OGT表达水平的变化及其对CRC细胞化疗耐药性的影响。通过一系列分子生物学实验,我们证实了ADAR是OGT调控的下游靶标,强调了OGT介导的糖基化在稳定ADAR中的作用。此外,我们还进行了 RNA 免疫沉淀(RIP)实验,以研究 ADAR 介导的 A 到 I 编辑对与 DNA 损伤修复相关基因的 mRNA 稳定性和翻译的影响。研究发现,OGT 表达的升高会增强 CRC 的恶性程度和对化疗的耐受性。OGT 的影响会导致 ADAR 的糖基化,从而增加其蛋白质水平。ADAR 通过其在 A 到 I 编辑中的作用,调节了与 DNA 损伤修复有关的基因的 mRNA 编辑。这种调控增强了这些基因的表达,提高了 DNA 修复能力,并最终增强了 CRC 细胞的化疗抗性。总之,ADAR在OGT介导的O-糖基化修饰的正调控下促进PARP1的表达,从而增强COAD细胞的耐药性。这为克服 CRC 的耐药性提供了研究基础。
期刊介绍:
Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology.
The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.