Photosynthesis Responses to the Infection with Plant Pathogens.

IF 3.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Plant-microbe Interactions Pub Date : 2024-11-13 DOI:10.1094/MPMI-05-24-0052-CR
Alissar Cheaib, Nabil Killiny
{"title":"Photosynthesis Responses to the Infection with Plant Pathogens.","authors":"Alissar Cheaib, Nabil Killiny","doi":"10.1094/MPMI-05-24-0052-CR","DOIUrl":null,"url":null,"abstract":"<p><p>Photosynthesis, the remarkable process by which green plants synthesize nutrients using light energy, plays a crucial role in sustaining life on Earth. However, the effects of pathogens on photosynthesis are not widely understood. In general, a reduction of photosynthesis occurs upon the infection with pathogens. Two main scenarios are responsible for the reduction in photosynthetic capacity. In the first scenario, the pathogen attacks green aerial tissues such as caused by fungal and bacterial leaf spots and blights which affect photosynthesis by destroying green leaf tissue or causing defoliation. This leads to a decrease in the photosynthetic area, ultimately reducing photosynthesis. Interestingly, even when the overall chlorophyll content of leaves is significantly reduced due to pathogen invasion, the remaining chlorophyll-containing leaf area may maintain or even enhance its photosynthetic efficiency. This compensatory mechanism helps mitigate the loss of photosynthetic area. However, the overall yield of the plant is still affected. The second scenario is a reduction in chlorophyll content due to chlorosis, which is characterized by yellowing of leaves. It is a common symptom of plant diseases. It refers to a reduction in the amount of chlorophyll per chloroplast, rather than a decrease in chloroplast number. Diseases caused by viruses and phytoplasmas often exhibit chlorosis. While pathogens disrupt photosynthesis, plants exhibit significant adaptations to cope with these challenges. Understanding these interactions is essential for sustainable agriculture and ecosystem health. Thus, in this review, we discuss the effect of several pathogens on the photosynthesis processes and efficiency in detail.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant-microbe Interactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1094/MPMI-05-24-0052-CR","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Photosynthesis, the remarkable process by which green plants synthesize nutrients using light energy, plays a crucial role in sustaining life on Earth. However, the effects of pathogens on photosynthesis are not widely understood. In general, a reduction of photosynthesis occurs upon the infection with pathogens. Two main scenarios are responsible for the reduction in photosynthetic capacity. In the first scenario, the pathogen attacks green aerial tissues such as caused by fungal and bacterial leaf spots and blights which affect photosynthesis by destroying green leaf tissue or causing defoliation. This leads to a decrease in the photosynthetic area, ultimately reducing photosynthesis. Interestingly, even when the overall chlorophyll content of leaves is significantly reduced due to pathogen invasion, the remaining chlorophyll-containing leaf area may maintain or even enhance its photosynthetic efficiency. This compensatory mechanism helps mitigate the loss of photosynthetic area. However, the overall yield of the plant is still affected. The second scenario is a reduction in chlorophyll content due to chlorosis, which is characterized by yellowing of leaves. It is a common symptom of plant diseases. It refers to a reduction in the amount of chlorophyll per chloroplast, rather than a decrease in chloroplast number. Diseases caused by viruses and phytoplasmas often exhibit chlorosis. While pathogens disrupt photosynthesis, plants exhibit significant adaptations to cope with these challenges. Understanding these interactions is essential for sustainable agriculture and ecosystem health. Thus, in this review, we discuss the effect of several pathogens on the photosynthesis processes and efficiency in detail.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光合作用对植物病原体感染的反应
光合作用是绿色植物利用光能合成营养物质的非凡过程,在维持地球生命方面发挥着至关重要的作用。然而,病原体对光合作用的影响尚未得到广泛了解。一般来说,病原体感染会导致光合作用降低。光合作用能力下降主要有两种情况。在第一种情况下,病原体侵袭绿色气生组织,如真菌和细菌叶斑病和枯萎病引起的叶斑病和枯萎病,它们通过破坏绿叶组织或引起落叶来影响光合作用。这会导致光合作用面积减少,最终降低光合作用。有趣的是,即使叶片的整体叶绿素含量因病原体入侵而大幅减少,剩余的含叶绿素叶面积仍可保持甚至提高光合效率。这种补偿机制有助于减轻光合面积的损失。然而,植物的总体产量仍会受到影响。第二种情况是叶绿素含量因萎黄病而减少,萎黄病的特征是叶片变黄。这是植物病害的常见症状。它指的是每个叶绿体的叶绿素含量减少,而不是叶绿体数量减少。由病毒和植物病原体引起的病害通常会表现出萎黄病。病原体破坏光合作用的同时,植物也会表现出明显的适应性来应对这些挑战。了解这些相互作用对可持续农业和生态系统健康至关重要。因此,在本综述中,我们将详细讨论几种病原体对光合作用过程和效率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Plant-microbe Interactions
Molecular Plant-microbe Interactions 生物-生化与分子生物学
CiteScore
7.00
自引率
2.90%
发文量
250
审稿时长
3 months
期刊介绍: Molecular Plant-Microbe Interactions® (MPMI) publishes fundamental and advanced applied research on the genetics, genomics, molecular biology, biochemistry, and biophysics of pathological, symbiotic, and associative interactions of microbes, insects, nematodes, or parasitic plants with plants.
期刊最新文献
A Diazeniumdiolate Signal in Pseudomonas syringae Upregulates Virulence Factors and Promotes Survival in Plants. SymRK Regulates G-Protein Signaling During Nodulation in Soybean (Glycine max) by Modifying RGS Phosphorylation and Activity. The Soybean Cyst Nematode Effector Cysteine Protease 1 (CPR1) Targets a Mitochondrial Soybean Branched-Chain Amino Acid Aminotransferase (GmBCAT1). Generation of inheritable A-to-G transitions using adenine base editing and NG-PAM Cas9 in Arabidopsis thaliana. Majority of the Highly Variable NLRs in Maize Share Genomic Location and Contain Additional Target-Binding Domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1