Bimal K Chetri, S S Sonu, Rahul G Shelke, Sudip Mitra, Latha Rangan
{"title":"De Novo Sequencing of Drymaria villosa and Comparative Analysis of Plastome in Caryophyllaceae Across 23 Species.","authors":"Bimal K Chetri, S S Sonu, Rahul G Shelke, Sudip Mitra, Latha Rangan","doi":"10.1007/s12033-024-01317-0","DOIUrl":null,"url":null,"abstract":"<p><p>Plant plastome are well studied due to their essential roles in photosynthesis and plant development. Comparative studies among plastome of closely related genera or families are limited, hindering our understanding of evolutionary changes and adaptation. This study presents a comparative analysis of 23 Caryophyllaceae plastome revealing a dynamic interplay of conserved and variable features. The genome size exhibited a moderate coefficient of variation (CV) of 2.58%. The large single-copy (LSC) and small single-copy (SSC) regions were highly conserved, with CVs of 2.55% and 2.00%, respectively. In contrast, the inverted repeat (IR) regions displayed greater variability, with a CV of 4.23%, indicating dynamic evolutionary processes. Exon counts varied significantly (CV 17.20%), while intron counts showed some variability (CV 7.79%), reflecting diverse gene structures. Coding sequences had moderate variability (CV 3.67%), while non-coding sequences varied more (CV 5.05%). tRNA counts were slightly variable (CV 2.67%), and GC content was notably consistent (CV 0.40%). This study includes the newly sequenced plastome of Drymaria villosa (GenBank accession OR790517), confirming its placement within Caryophyllaceae with significant diversification through phylogenetic analysis. Correlations (> 0.6) among plastome components and genome size reflect their tight evolutionary linkage, enhancing our understanding of plastome evolution in Caryophyllaceae and aiding future investigations into the ecological and medicinal potential of D. villosa and related species.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01317-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant plastome are well studied due to their essential roles in photosynthesis and plant development. Comparative studies among plastome of closely related genera or families are limited, hindering our understanding of evolutionary changes and adaptation. This study presents a comparative analysis of 23 Caryophyllaceae plastome revealing a dynamic interplay of conserved and variable features. The genome size exhibited a moderate coefficient of variation (CV) of 2.58%. The large single-copy (LSC) and small single-copy (SSC) regions were highly conserved, with CVs of 2.55% and 2.00%, respectively. In contrast, the inverted repeat (IR) regions displayed greater variability, with a CV of 4.23%, indicating dynamic evolutionary processes. Exon counts varied significantly (CV 17.20%), while intron counts showed some variability (CV 7.79%), reflecting diverse gene structures. Coding sequences had moderate variability (CV 3.67%), while non-coding sequences varied more (CV 5.05%). tRNA counts were slightly variable (CV 2.67%), and GC content was notably consistent (CV 0.40%). This study includes the newly sequenced plastome of Drymaria villosa (GenBank accession OR790517), confirming its placement within Caryophyllaceae with significant diversification through phylogenetic analysis. Correlations (> 0.6) among plastome components and genome size reflect their tight evolutionary linkage, enhancing our understanding of plastome evolution in Caryophyllaceae and aiding future investigations into the ecological and medicinal potential of D. villosa and related species.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.