Yan-Dong Ma , Hang Liu , Qian Chen , Yi Zheng , Chao-Ren Yan , Yan-Song Li , Yi-Xuan Wang , Yu-Ting Dai , Yang-Hua Jiang , Jing-Ming Shi
{"title":"Gallic acid and loganic acid attenuate amyloid-β oligomer-induced microglia damage via NF-КB signaling pathway","authors":"Yan-Dong Ma , Hang Liu , Qian Chen , Yi Zheng , Chao-Ren Yan , Yan-Song Li , Yi-Xuan Wang , Yu-Ting Dai , Yang-Hua Jiang , Jing-Ming Shi","doi":"10.1016/j.neuropharm.2024.110215","DOIUrl":null,"url":null,"abstract":"<div><div>Amyloid β peptide (Aβ) induces neurodegeneration in the early stage of Alzheimer's disease (AD), resulting in neuroinflammation, oxidative damage, and mitochondrial impaired function. These reactions were closely associated with the pathological changes of brain microglia. Therefore, it was crucial to investigate the precise process of neuroinflammation induced by Aβ in microglia and discover therapies to alleviate its harmful consequences. This study evaluated the toxicity detection of primary microglia generated by Aβ42 ADDL. identification of inflammatory markers, measurement of ROS, and assessment of mitochondrial energy metabolism, mitochondrial membrane potential damage and mitochondrial ROS to evaluate the reparative properties of natural small molecule compounds Gallic acid and Loganic acid on primary mouse microglia. The findings indicated that Gallic acid and Loganic acid exhibited diverse reparative effects on impaired microglia. Thus, it can be provisionally predicted that Aβ42 ADDL affects microglia and promotes modifications in the NF-кB signaling pathway. Gallic acid and Loganic acid were expected to initially restore the NF-кB signaling pathway, leading to a reduction in M1-microglia and an elevation in M2-microglia, thereby decreasing various inflammatory factors and increasing anti-inflammatory factors. The mitochondrial metabolism, mitochondrial membrane potential, and mitochondrial ROS of primary microglia were restored, leading to a reduction in neuroinflammation.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"263 ","pages":"Article 110215"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390824003848","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Amyloid β peptide (Aβ) induces neurodegeneration in the early stage of Alzheimer's disease (AD), resulting in neuroinflammation, oxidative damage, and mitochondrial impaired function. These reactions were closely associated with the pathological changes of brain microglia. Therefore, it was crucial to investigate the precise process of neuroinflammation induced by Aβ in microglia and discover therapies to alleviate its harmful consequences. This study evaluated the toxicity detection of primary microglia generated by Aβ42 ADDL. identification of inflammatory markers, measurement of ROS, and assessment of mitochondrial energy metabolism, mitochondrial membrane potential damage and mitochondrial ROS to evaluate the reparative properties of natural small molecule compounds Gallic acid and Loganic acid on primary mouse microglia. The findings indicated that Gallic acid and Loganic acid exhibited diverse reparative effects on impaired microglia. Thus, it can be provisionally predicted that Aβ42 ADDL affects microglia and promotes modifications in the NF-кB signaling pathway. Gallic acid and Loganic acid were expected to initially restore the NF-кB signaling pathway, leading to a reduction in M1-microglia and an elevation in M2-microglia, thereby decreasing various inflammatory factors and increasing anti-inflammatory factors. The mitochondrial metabolism, mitochondrial membrane potential, and mitochondrial ROS of primary microglia were restored, leading to a reduction in neuroinflammation.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).