BerryPortraits: Phenotyping Of Ripening Traits cranberry (Vaccinium macrocarpon Ait.) with YOLOv8.

IF 4.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Plant Methods Pub Date : 2024-11-13 DOI:10.1186/s13007-024-01285-1
Jenyne Loarca, Tyr Wiesner-Hanks, Hector Lopez-Moreno, Andrew F Maule, Michael Liou, Maria Alejandra Torres-Meraz, Luis Diaz-Garcia, Jennifer Johnson-Cicalese, Jeffrey Neyhart, James Polashock, Gina M Sideli, Christopher F Strock, Craig T Beil, Moira J Sheehan, Massimo Iorizzo, Amaya Atucha, Juan Zalapa
{"title":"BerryPortraits: Phenotyping Of Ripening Traits cranberry (Vaccinium macrocarpon Ait.) with YOLOv8.","authors":"Jenyne Loarca, Tyr Wiesner-Hanks, Hector Lopez-Moreno, Andrew F Maule, Michael Liou, Maria Alejandra Torres-Meraz, Luis Diaz-Garcia, Jennifer Johnson-Cicalese, Jeffrey Neyhart, James Polashock, Gina M Sideli, Christopher F Strock, Craig T Beil, Moira J Sheehan, Massimo Iorizzo, Amaya Atucha, Juan Zalapa","doi":"10.1186/s13007-024-01285-1","DOIUrl":null,"url":null,"abstract":"<p><p>BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-developed, actively-maintained Python libraries such as OpenCV, BerryPortraits software was trained on 512 postharvest images (taken under controlled lighting conditions) of phenotypically diverse cranberry populations (Vaccinium macrocarpon Ait.) from the two largest public cranberry breeding programs in the U.S. The implementation of CIELAB, an intuitive and perceptually uniform color space, enables differentiation between berry color and berry brightness, which are confounded in classic RGB color channel measurements. Furthermore, computer vision enables precise and quantifiable color phenotyping, thus facilitating inclusion of researchers and data analysts with color vision deficiency. BerryPortraits is a phenotyping tool for researchers in plant breeding, plant genetics, horticulture, food science, plant physiology, plant pathology, and related fields. BerryPortraits has strong potential applications for other specialty crops such as blueberry, lingonberry, caneberry, grape, and more. As an open source phenotyping tool based on widely-used python libraries, BerryPortraits allows anyone to use, fork, modify, optimize, and embed this software into other tools or pipelines.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"172"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562335/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01285-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

BerryPortraits (Phenotyping of Ripening Traits) is open source Python-based image-analysis software that rapidly detects and segments berries and extracts morphometric data on fruit quality traits such as berry color, size, shape, and uniformity. Utilizing the YOLOv8 framework and community-developed, actively-maintained Python libraries such as OpenCV, BerryPortraits software was trained on 512 postharvest images (taken under controlled lighting conditions) of phenotypically diverse cranberry populations (Vaccinium macrocarpon Ait.) from the two largest public cranberry breeding programs in the U.S. The implementation of CIELAB, an intuitive and perceptually uniform color space, enables differentiation between berry color and berry brightness, which are confounded in classic RGB color channel measurements. Furthermore, computer vision enables precise and quantifiable color phenotyping, thus facilitating inclusion of researchers and data analysts with color vision deficiency. BerryPortraits is a phenotyping tool for researchers in plant breeding, plant genetics, horticulture, food science, plant physiology, plant pathology, and related fields. BerryPortraits has strong potential applications for other specialty crops such as blueberry, lingonberry, caneberry, grape, and more. As an open source phenotyping tool based on widely-used python libraries, BerryPortraits allows anyone to use, fork, modify, optimize, and embed this software into other tools or pipelines.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BerryPortraits:利用 YOLOv8 对蔓越莓(Vaccinium macrocarpon Ait.)
BerryPortraits(成熟性状表型)是一款基于 Python 的开源图像分析软件,可快速检测和分割浆果,并提取有关浆果颜色、大小、形状和均匀性等果实品质性状的形态计量数据。利用 YOLOv8 框架和社区开发并积极维护的 Python 库(如 OpenCV),BerryPortraits 软件在 512 幅采后图像(在受控光照条件下拍摄)上进行了训练,这些图像来自两个最大的公共蔓越莓种群(Vaccinium macrocarpon Ait.CIELAB 是一种直观、感知统一的色彩空间,它的应用可区分浆果颜色和浆果亮度,而在传统的 RGB 色彩通道测量中,浆果颜色和浆果亮度是相互混淆的。此外,计算机视觉还能实现精确、可量化的色彩表型,从而方便有色觉缺陷的研究人员和数据分析师使用。BerryPortraits 是植物育种、植物遗传学、园艺学、食品科学、植物生理学、植物病理学及相关领域研究人员的表型工具。BerryPortraits 在蓝莓、越橘、甘蔗、葡萄等其他特种作物上也有很强的应用潜力。作为基于广泛使用的 python 库的开源表型工具,BerryPortraits 允许任何人使用、分叉、修改、优化该软件,并将其嵌入到其他工具或管道中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Methods
Plant Methods 生物-植物科学
CiteScore
9.20
自引率
3.90%
发文量
121
审稿时长
2 months
期刊介绍: Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences. There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics. Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.
期刊最新文献
AI-powered detection and quantification of post-harvest physiological deterioration (PPD) in cassava using YOLO foundation models and K-means clustering. An innovative natural speed breeding technique for accelerated chickpea (Cicer arietinum L.) generation turnover. Strategy for early selection for grain yield in soybean using BLUPIS. Automated image registration of RGB, hyperspectral and chlorophyll fluorescence imaging data. Establishment of callus induction and plantlet regeneration systems of Peucedanum Praeruptorum dunn based on the tissue culture method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1