{"title":"Twisted clustered pinhole collimation for improved high-energy preclinical SPECT/PET.","authors":"Valerio Cosmi, Monika Kvassheim, Satyajit Ghosh, Freek J Beekman, Marlies C Goorden","doi":"10.1088/1361-6560/ad8c97","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Advanced pinhole collimation geometries optimized for preclinical high-energy<i>ɣ</i>imaging facilitate applications such as<i>ɑ</i>and<i>ß</i>emitter imaging, simultaneous multi-isotope PET and PET/SPECT, and positron range-free PET. These geometries replace each pinhole with a group of clustered pinholes (CPs) featuring smaller individual pinhole opening angles (POAs), enabling sub-mm resolution imaging up to ∼1 MeV. Further narrowing POAs while retaining field-of-view (FOV) may enhance high-energy imaging but faces geometrical constraints. Here, we detail how the novel twisted CPs (TCPs) address this challenge.<i>Approach.</i>We compared TCP and CP collimator sensitivity at equal system resolution (SR) and SR at matched sensitivity by tuning pinhole diameters for<sup>18</sup>F (511 keV) and<sup>89</sup>Zr (909 keV). Additionally, simulated Derenzo phantoms at low activity (LA: 12 MBq ml<sup>-1</sup>) and high activity (HA: 190 MBq ml<sup>-1</sup>) levels, along with uniformity images, were compared to assess image resolution and uniformity.<i>Main results.</i>At equal SR, TCP increased average central FOV sensitivity by 15.6% for<sup>18</sup>F and 29.4% for<sup>89</sup>Zr compared to CP. Image resolution was comparable, except for<sup>89</sup>Zr at LA, where TCP resolved 0.80 mm diameter rods compared to 0.90 mm for CP. Image uniformity was equivalent for<sup>18</sup>F, while for<sup>89</sup>Zr TCP granted a 10.4% improvement. For collimators with matched sensitivity, TCP improved SR by 6.6% for<sup>18</sup>F and 17.7% for<sup>89</sup>Zr while also enhancing image resolution; for<sup>18</sup>F, rods distinguished were 0.65 mm (CP) and 0.60 mm (TCP) for HA, and 0.70 mm (CP and TCP) for LA. For<sup>89</sup>Zr, image resolutions were 0.75 mm (CP) and 0.65 mm (TCP) for HA, and 0.90 mm (CP) and 0.80 mm (TCP) for LA. Image uniformity with TCP decreased by 18.3% for<sup>18</sup>F but improved by 20.1% for<sup>89</sup>Zr.<i>Significance.</i>This study suggests that the TCP design has potential to improve high-energy<i>ɣ</i>imaging.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":"69 22","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad8c97","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective.Advanced pinhole collimation geometries optimized for preclinical high-energyɣimaging facilitate applications such asɑandßemitter imaging, simultaneous multi-isotope PET and PET/SPECT, and positron range-free PET. These geometries replace each pinhole with a group of clustered pinholes (CPs) featuring smaller individual pinhole opening angles (POAs), enabling sub-mm resolution imaging up to ∼1 MeV. Further narrowing POAs while retaining field-of-view (FOV) may enhance high-energy imaging but faces geometrical constraints. Here, we detail how the novel twisted CPs (TCPs) address this challenge.Approach.We compared TCP and CP collimator sensitivity at equal system resolution (SR) and SR at matched sensitivity by tuning pinhole diameters for18F (511 keV) and89Zr (909 keV). Additionally, simulated Derenzo phantoms at low activity (LA: 12 MBq ml-1) and high activity (HA: 190 MBq ml-1) levels, along with uniformity images, were compared to assess image resolution and uniformity.Main results.At equal SR, TCP increased average central FOV sensitivity by 15.6% for18F and 29.4% for89Zr compared to CP. Image resolution was comparable, except for89Zr at LA, where TCP resolved 0.80 mm diameter rods compared to 0.90 mm for CP. Image uniformity was equivalent for18F, while for89Zr TCP granted a 10.4% improvement. For collimators with matched sensitivity, TCP improved SR by 6.6% for18F and 17.7% for89Zr while also enhancing image resolution; for18F, rods distinguished were 0.65 mm (CP) and 0.60 mm (TCP) for HA, and 0.70 mm (CP and TCP) for LA. For89Zr, image resolutions were 0.75 mm (CP) and 0.65 mm (TCP) for HA, and 0.90 mm (CP) and 0.80 mm (TCP) for LA. Image uniformity with TCP decreased by 18.3% for18F but improved by 20.1% for89Zr.Significance.This study suggests that the TCP design has potential to improve high-energyɣimaging.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry