Nathan A Harper, Emily Y Hwang, Philip A Kocheril, Tze King Lam, Scott K Cushing
{"title":"Subtleties of nanophotonic lithium niobate waveguides for on-chip evanescent wave sensing.","authors":"Nathan A Harper, Emily Y Hwang, Philip A Kocheril, Tze King Lam, Scott K Cushing","doi":"10.1364/OE.529570","DOIUrl":null,"url":null,"abstract":"<p><p>Thin-film lithium niobate (TFLN) is promising for optical sensing due to its high nonlinearities, but its material properties present unique design challenges. We compare the sensing performance of the fundamental modes on a TFLN waveguide with a fluorescent dye sample. The TM mode has better overlap with the sample, with a 1.4 × greater sample absorption rate versus the TE mode. However, the TM mode also scatters at a 1.4 × greater rate, yielding less fluorescence overall. The TE mode is, therefore, more appropriate for sensing. Our findings have important implications for TFLN-based sensor designs.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 16","pages":"27931-27939"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.529570","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Thin-film lithium niobate (TFLN) is promising for optical sensing due to its high nonlinearities, but its material properties present unique design challenges. We compare the sensing performance of the fundamental modes on a TFLN waveguide with a fluorescent dye sample. The TM mode has better overlap with the sample, with a 1.4 × greater sample absorption rate versus the TE mode. However, the TM mode also scatters at a 1.4 × greater rate, yielding less fluorescence overall. The TE mode is, therefore, more appropriate for sensing. Our findings have important implications for TFLN-based sensor designs.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.