Persistence landscapes: Charting a path to unbiased radiological interpretation.

Q2 Medicine Oncotarget Pub Date : 2024-11-12 DOI:10.18632/oncotarget.28671
Yashbir Singh, Colleen Farrelly, Quincy A Hathaway, Gunnar Carlsson
{"title":"Persistence landscapes: Charting a path to unbiased radiological interpretation.","authors":"Yashbir Singh, Colleen Farrelly, Quincy A Hathaway, Gunnar Carlsson","doi":"10.18632/oncotarget.28671","DOIUrl":null,"url":null,"abstract":"<p><p>Persistence landscapes, a sophisticated tool from topological data analysis, offer a promising approach to address biases in radiological interpretation and AI model development. By transforming complex topological features into statistically analyzable functions, they enable robust comparisons between populations and datasets. Persistence landscapes excel in noise filtration, fusion bias mitigation, and enhancing machine learning models. Despite challenges in computation and integration, they show potential to improve the accuracy and equity of radiological analysis, particularly in multi-modal imaging and AI-assisted interpretation.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"790-792"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559655/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncotarget","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncotarget.28671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Persistence landscapes, a sophisticated tool from topological data analysis, offer a promising approach to address biases in radiological interpretation and AI model development. By transforming complex topological features into statistically analyzable functions, they enable robust comparisons between populations and datasets. Persistence landscapes excel in noise filtration, fusion bias mitigation, and enhancing machine learning models. Despite challenges in computation and integration, they show potential to improve the accuracy and equity of radiological analysis, particularly in multi-modal imaging and AI-assisted interpretation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
持久性景观:为无偏见的放射学解释指明方向。
持久性景观是拓扑数据分析的一种复杂工具,它为解决放射学解释和人工智能模型开发中的偏差提供了一种很有前景的方法。通过将复杂的拓扑特征转化为可统计分析的函数,它们能够在人群和数据集之间进行稳健的比较。持久性景观在噪声过滤、减轻融合偏差和增强机器学习模型方面表现出色。尽管在计算和集成方面存在挑战,但它们在提高放射学分析的准确性和公平性方面显示出潜力,尤其是在多模态成像和人工智能辅助解读方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Oncotarget
Oncotarget Oncogenes-CELL BIOLOGY
CiteScore
6.60
自引率
0.00%
发文量
129
审稿时长
1.5 months
期刊介绍: Information not localized
期刊最新文献
Advancements in cell-penetrating monoclonal antibody treatment. B7-H4: A potential therapeutic target in adenoid cystic carcinoma. Computed tomography-based radiomics and body composition model for predicting hepatic decompensation. Mesenchymal stem cells - the secret agents of cancer immunotherapy: Promises, challenges, and surprising twists. Retraction: Hyperglycemia via activation of thromboxane A2 receptor impairs the integrity and function of blood-brain barrier in microvascular endothelial cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1