Si Wu, Xiaohui Su, Yaqing Qiao, Le Liu, ZiJing Yang, Wei Xiong, Qiaodan Chen, Leimin Deng
{"title":"Coating-assisted picosecond laser ablation for microstructure fabrication of SiC ceramics.","authors":"Si Wu, Xiaohui Su, Yaqing Qiao, Le Liu, ZiJing Yang, Wei Xiong, Qiaodan Chen, Leimin Deng","doi":"10.1364/OE.521035","DOIUrl":null,"url":null,"abstract":"<p><p>Silicon carbide (SiC) ceramics have emerged as critical materials in the production of high-precision components. Ultrafast laser processing is deemed the optimal technique for micro-nano manufacturing of SiC. However, the permanent deposition layer induced by laser ablation can critically impact the precision of the component. In this work, a coating-assisted picosecond laser ablation (CAPLA) method was proposed, in which sacrificial photoresist coating was utilized to improve surface quality without efficiency loss. The coating serves to prevent the uncooled plasma from contacting with the substrate, thereby preventing the formation of a permanent deposition layer. By comparing the CAPLA method with laser direct ablation, the influence of laser parameters and photoresist coating characteristics on the deposition layer was investigated systematically. A processed surface devoid of deposition layers can be achieved by CAPLA with low pulse energy and a high number of scans. The uniformity is critical to ensure the transmission of the laser beam, and a larger thickness can improve the processing efficiency by increasing the limit of pulse energy capacity. Pin arrays and vacuum grooves for SiC ceramic vacuum chucks were fabricated to demonstrate the superiority of the CAPLA method. These results suggest that this method can be a novel and promising approach for high-precision component manufacturing.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"26512-26524"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.521035","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon carbide (SiC) ceramics have emerged as critical materials in the production of high-precision components. Ultrafast laser processing is deemed the optimal technique for micro-nano manufacturing of SiC. However, the permanent deposition layer induced by laser ablation can critically impact the precision of the component. In this work, a coating-assisted picosecond laser ablation (CAPLA) method was proposed, in which sacrificial photoresist coating was utilized to improve surface quality without efficiency loss. The coating serves to prevent the uncooled plasma from contacting with the substrate, thereby preventing the formation of a permanent deposition layer. By comparing the CAPLA method with laser direct ablation, the influence of laser parameters and photoresist coating characteristics on the deposition layer was investigated systematically. A processed surface devoid of deposition layers can be achieved by CAPLA with low pulse energy and a high number of scans. The uniformity is critical to ensure the transmission of the laser beam, and a larger thickness can improve the processing efficiency by increasing the limit of pulse energy capacity. Pin arrays and vacuum grooves for SiC ceramic vacuum chucks were fabricated to demonstrate the superiority of the CAPLA method. These results suggest that this method can be a novel and promising approach for high-precision component manufacturing.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.