Xinyue Xie, Wei-Wei Yu, Zhe Song, Jun Wang, Xi Zhao
{"title":"Impact of electronic correlation on strong laser-induced bound-state transitions.","authors":"Xinyue Xie, Wei-Wei Yu, Zhe Song, Jun Wang, Xi Zhao","doi":"10.1364/OE.530317","DOIUrl":null,"url":null,"abstract":"<p><p>Electron correlation (EC) plays a crucial role in all multi-electron systems and dynamic processes. In this work, we focus on strong laser-induced bound-bound transitions (BBT), which are fundamental to optical absorption measurements. We use the helium atom, the simplest two-electron system, as our test case, utilizing the ab initio code package HeTDSE. We examined the bound state energy levels, transition dipole moments (TDMs), and the dynamics of strong laser-induced BBT, both with and without considering EC. Our results indicate that EC significantly impacts the energy levels of the bound states and the TDMs. These effects collectively influence the transition dynamics of the excited states. Although EC does not alter the quantum transition pathways between resonance states, it generally increases the probability of resonance transitions in most cases. Our findings provide a quantitative description of EC in laser-induced BBT.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"26846-26857"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.530317","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Electron correlation (EC) plays a crucial role in all multi-electron systems and dynamic processes. In this work, we focus on strong laser-induced bound-bound transitions (BBT), which are fundamental to optical absorption measurements. We use the helium atom, the simplest two-electron system, as our test case, utilizing the ab initio code package HeTDSE. We examined the bound state energy levels, transition dipole moments (TDMs), and the dynamics of strong laser-induced BBT, both with and without considering EC. Our results indicate that EC significantly impacts the energy levels of the bound states and the TDMs. These effects collectively influence the transition dynamics of the excited states. Although EC does not alter the quantum transition pathways between resonance states, it generally increases the probability of resonance transitions in most cases. Our findings provide a quantitative description of EC in laser-induced BBT.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.