Tang Li, Pieter M Blok, James Burridge, Akito Kaga, Wei Guo
{"title":"Multi-Scale Attention Network for Vertical Seed Distribution in Soybean Breeding Fields.","authors":"Tang Li, Pieter M Blok, James Burridge, Akito Kaga, Wei Guo","doi":"10.34133/plantphenomics.0260","DOIUrl":null,"url":null,"abstract":"<p><p>The increase in the global population is leading to a doubling of the demand for protein. Soybean (<i>Glycine max</i>), a key contributor to global plant-based protein supplies, requires ongoing yield enhancements to keep pace with increasing demand. Precise, on-plant seed counting and localization may catalyze breeding selection of shoot architectures and seed localization patterns related to superior performance in high planting density and contribute to increased yield. Traditional manual counting and localization methods are labor-intensive and prone to error, necessitating more efficient approaches for yield prediction and seed distribution analysis. To solve this, we propose MSANet: a novel deep learning framework tailored for counting and localization of soybean seeds on mature field-grown soy plants. A multi-scale attention map mechanism was applied to maximize model performance in seed counting and localization in soybean breeding fields. We compared our model with a previous state-of-the-art model using the benchmark dataset and an enlarged dataset, including various soybean genotypes. Our model outperforms previous state-of-the-art methods on all datasets across various soybean genotypes on both counting and localization tasks. Furthermore, our model also performed well on in-canopy 360° video, dramatically increasing data collection efficiency. We also propose a technique that enables previously inaccessible insights into the phenotypic and genetic diversity of single plant vertical seed distribution, which may accelerate the breeding process. To accelerate further research in this domain, we have made our dataset and software publicly available: https://github.com/UTokyo-FieldPhenomics-Lab/MSANet.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0260"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0260","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The increase in the global population is leading to a doubling of the demand for protein. Soybean (Glycine max), a key contributor to global plant-based protein supplies, requires ongoing yield enhancements to keep pace with increasing demand. Precise, on-plant seed counting and localization may catalyze breeding selection of shoot architectures and seed localization patterns related to superior performance in high planting density and contribute to increased yield. Traditional manual counting and localization methods are labor-intensive and prone to error, necessitating more efficient approaches for yield prediction and seed distribution analysis. To solve this, we propose MSANet: a novel deep learning framework tailored for counting and localization of soybean seeds on mature field-grown soy plants. A multi-scale attention map mechanism was applied to maximize model performance in seed counting and localization in soybean breeding fields. We compared our model with a previous state-of-the-art model using the benchmark dataset and an enlarged dataset, including various soybean genotypes. Our model outperforms previous state-of-the-art methods on all datasets across various soybean genotypes on both counting and localization tasks. Furthermore, our model also performed well on in-canopy 360° video, dramatically increasing data collection efficiency. We also propose a technique that enables previously inaccessible insights into the phenotypic and genetic diversity of single plant vertical seed distribution, which may accelerate the breeding process. To accelerate further research in this domain, we have made our dataset and software publicly available: https://github.com/UTokyo-FieldPhenomics-Lab/MSANet.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.