Spatially Fractionated Radiotherapy with Very High Energy Electron Pencil Beam Scanning.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2024-11-13 DOI:10.1088/1361-6560/ad9232
Jade Fischer, Alexander J Hart, Nicole Bedriova, Deae-Eddine Krim, Nathan Clements, Joseph John Bateman, Pierre Korysko, Wilfrid Farabolini, Vilde Rieker, Roberto Corsini, Manjit Dosanjh, Magdalena Bazalova-Carter
{"title":"Spatially Fractionated Radiotherapy with Very High Energy Electron Pencil Beam Scanning.","authors":"Jade Fischer, Alexander J Hart, Nicole Bedriova, Deae-Eddine Krim, Nathan Clements, Joseph John Bateman, Pierre Korysko, Wilfrid Farabolini, Vilde Rieker, Roberto Corsini, Manjit Dosanjh, Magdalena Bazalova-Carter","doi":"10.1088/1361-6560/ad9232","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>&#xD;To evaluate spatially fractionated radiation therapy (SFRT) for very-high-energy electrons (VHEEs) delivered with pencil beam scanning.</p><p><strong>Approach: </strong>Radiochromic film was irradiated at the CERN Linear Electron Accelerator for Research (CLEAR) using 194 MeV electrons with a step-and-shoot technique, moving films within a water tank. Peak-to-valley dose ratios (PVDRs), depths of convergence (PVDR≤1.1), peak doses, and valley doses assessed SFRT dose distribution quality. A Monte Carlo (MI) model of the pencil beams was developed using TOPAS and applied to a five-beam VHEE SFRT treatment for a canine glioma patient, compared to a clinical 6 MV VMAT plan. The plans were evaluated based on dose-volume histograms, mean dose, and maximum dose to the planning target volume (PTV) and organs at risk (OARs).&#xD;Main Results:&#xD;Experimental PVDR values were maximized at 15.5 ± 0.1 at 12 mm depth for 5 mm spot spacing. A depth of convergence of 76.5 mm, 70.7 mm, and 56.6 mm was found for 5 mm, 4 mm, and 3 mm beamlet spacings, respectively. MC simulations and experiments showed good agreement, with maximum relative dose differences of 2% in percentage depth dose curves and less than 3% in beam profiles. Simulated PVDR values reached 180 ± 4, potentially achievable with reduced leakage dose. VHEE SFRT plans for the canine glioma patient showed a decrease in mean dose (>16%) to OARs while increasing the PTV mean dose by up to 15%. Lowering beam energy enhanced PTV dose homogeneity and reduced OAR maximum doses.</p><p><strong>Significance: </strong>The presented work demonstrates that pencil beam scanning SFRT with VHEEs could treat deep-seated tumors such as head and neck cancer or lung lesions, though small beam size and leakage dose may limit the achievable PVDR.&#xD.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad9232","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To evaluate spatially fractionated radiation therapy (SFRT) for very-high-energy electrons (VHEEs) delivered with pencil beam scanning.

Approach: Radiochromic film was irradiated at the CERN Linear Electron Accelerator for Research (CLEAR) using 194 MeV electrons with a step-and-shoot technique, moving films within a water tank. Peak-to-valley dose ratios (PVDRs), depths of convergence (PVDR≤1.1), peak doses, and valley doses assessed SFRT dose distribution quality. A Monte Carlo (MI) model of the pencil beams was developed using TOPAS and applied to a five-beam VHEE SFRT treatment for a canine glioma patient, compared to a clinical 6 MV VMAT plan. The plans were evaluated based on dose-volume histograms, mean dose, and maximum dose to the planning target volume (PTV) and organs at risk (OARs). Main Results: Experimental PVDR values were maximized at 15.5 ± 0.1 at 12 mm depth for 5 mm spot spacing. A depth of convergence of 76.5 mm, 70.7 mm, and 56.6 mm was found for 5 mm, 4 mm, and 3 mm beamlet spacings, respectively. MC simulations and experiments showed good agreement, with maximum relative dose differences of 2% in percentage depth dose curves and less than 3% in beam profiles. Simulated PVDR values reached 180 ± 4, potentially achievable with reduced leakage dose. VHEE SFRT plans for the canine glioma patient showed a decrease in mean dose (>16%) to OARs while increasing the PTV mean dose by up to 15%. Lowering beam energy enhanced PTV dose homogeneity and reduced OAR maximum doses.

Significance: The presented work demonstrates that pencil beam scanning SFRT with VHEEs could treat deep-seated tumors such as head and neck cancer or lung lesions, though small beam size and leakage dose may limit the achievable PVDR. .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用超高能量电子铅笔束扫描进行空间分次放疗
目的: 评估以铅笔束扫描方式输送的高能电子(VHEEs)的空间分次放射治疗(SFRT):在欧洲核子研究中心(CERN)的研究用直线电子加速器(CLEAR)中,使用 194 MeV 电子,采用步进和射击技术,在水箱中移动胶片,对放射性变色胶片进行辐照。峰谷剂量比(PVDR)、收敛深度(PVDR≤1.1)、峰值剂量和谷值剂量评估了 SFRT 的剂量分布质量。使用 TOPAS 开发了铅笔束的蒙特卡罗(MI)模型,并将其应用于犬胶质瘤患者的五束 VHEE SFRT 治疗,与临床 6 MV VMAT 计划进行比较。根据剂量-体积直方图、平均剂量以及规划靶体积(PTV)和危险器官(OAR)的最大剂量对计划进行了评估。5 毫米、4 毫米和 3 毫米光斑间距的收敛深度分别为 76.5 毫米、70.7 毫米和 56.6 毫米。MC 模拟和实验显示出良好的一致性,在百分比深度剂量曲线中,最大相对剂量差异为 2%,在射束剖面中,最大相对剂量差异小于 3%。模拟的 PVDR 值达到 180 ± 4,有可能在减少泄漏剂量的情况下实现。针对犬胶质瘤患者的 VHEE SFRT 计划显示,OAR 的平均剂量降低了(>16%),而 PTV 的平均剂量增加了 15%。降低射束能量增强了PTV剂量的均匀性,减少了OAR的最大剂量:这项研究表明,使用 VHEEs 的铅笔束扫描 SFRT 可以治疗深部肿瘤,如头颈部癌症或肺部病变,尽管小束流尺寸和泄漏剂量可能会限制可实现的 PVDR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Automated planning of curved needle channels in 3D printed patient-tailored applicators for cervical cancer brachytherapy. Comparison of contrast-enhanced ultrasound imaging (CEUS) and super-resolution ultrasound (SRU) for the quantification of ischaemia flow redistribution: a theoretical study. Novel frequency selective B1focusing passive Lenz resonators for substantial MRI signal-to-noise ratio amplification. On the microdosimetric characterisation of the radiation quality of a carbon-ion beam and the effect of the target volume thickness. Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1