An empirical model of carbon-ion relative biological effectiveness based on the linear correlation between radiosensitivity to photons and carbon ions.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2024-11-12 DOI:10.1088/1361-6560/ad918e
David Bruce Flint, Scott Bright, Conor McFadden, Teruaki Konishi, David K J Martinus, Mandira Manandhar, Mariam Ben Kacem, Lawrence Bronk, Gabriel O Sawakuchi
{"title":"An empirical model of carbon-ion relative biological effectiveness based on the linear correlation between radiosensitivity to photons and carbon ions.","authors":"David Bruce Flint, Scott Bright, Conor McFadden, Teruaki Konishi, David K J Martinus, Mandira Manandhar, Mariam Ben Kacem, Lawrence Bronk, Gabriel O Sawakuchi","doi":"10.1088/1361-6560/ad918e","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop an empirical model to predict carbon ion (C-ion) relative biological effectiveness (RBE). &#xD;&#xD;Approach. We used published cell survival data comprising 360 cell line/energy combinations to characterize the linear energy transfer (LET) dependence of cell radiosensitivity parameters describing the dose required to achieve a given survival level, e.g. 5% (D<sub>5%</sub>), which are linearly correlated between photon and C-ion radiations. Based on the LET response of the metrics D5% and D37%, we constructed a model containing four free parameters that predicts cells' linear quadratic model (LQM) survival curve parameters for C-ions, α<sub>C</sub>and β<sub>C</sub>, from the reference LQM parameters for photons, α<sub>X</sub>and β<sub>X</sub>, for a given C-ion LET value. We fit our model's free parameters to the training dataset and assessed its accuracy via leave-one out cross-validation. We further compared our model to the local effect model (LEM) and the microdosimetric kinetic model (MKM) by comparing its predictions against published predictions made with those models for clinically relevant LET values in the range of 23-107 keV/μm. &#xD;&#xD;Main Results. Our model predicted C-ion RBE within ±7%-15% depending on cell line and dose which was comparable to LEM and MKM for the same conditions. &#xD;&#xD;Significance. Our model offers comparable accuracy to the LEM or MKM but requires fewer input parameters and is less computationally expensive and whose implementation is so simple we provide it coded into a spreadsheet. Thus, our model can serve as a pragmatic alternative to these mechanistic models in cases where cell-specific input parameters cannot be obtained, the models cannot be implemented, or for which their computational efficiency is paramount.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad918e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To develop an empirical model to predict carbon ion (C-ion) relative biological effectiveness (RBE). Approach. We used published cell survival data comprising 360 cell line/energy combinations to characterize the linear energy transfer (LET) dependence of cell radiosensitivity parameters describing the dose required to achieve a given survival level, e.g. 5% (D5%), which are linearly correlated between photon and C-ion radiations. Based on the LET response of the metrics D5% and D37%, we constructed a model containing four free parameters that predicts cells' linear quadratic model (LQM) survival curve parameters for C-ions, αCand βC, from the reference LQM parameters for photons, αXand βX, for a given C-ion LET value. We fit our model's free parameters to the training dataset and assessed its accuracy via leave-one out cross-validation. We further compared our model to the local effect model (LEM) and the microdosimetric kinetic model (MKM) by comparing its predictions against published predictions made with those models for clinically relevant LET values in the range of 23-107 keV/μm. Main Results. Our model predicted C-ion RBE within ±7%-15% depending on cell line and dose which was comparable to LEM and MKM for the same conditions. Significance. Our model offers comparable accuracy to the LEM or MKM but requires fewer input parameters and is less computationally expensive and whose implementation is so simple we provide it coded into a spreadsheet. Thus, our model can serve as a pragmatic alternative to these mechanistic models in cases where cell-specific input parameters cannot be obtained, the models cannot be implemented, or for which their computational efficiency is paramount.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光子和碳离子辐射敏感性线性相关关系的碳离子相对生物有效性经验模型。
目标:建立一个经验模型来预测碳离子(C-ion)的相对生物有效性(RBE)。我们使用已公布的细胞存活数据(包括 360 种细胞系/能量组合)来描述细胞辐射敏感性参数的线性能量转移(LET)依赖性,这些参数描述了达到特定存活水平(如 5% (D5%))所需的剂量,光子辐射和碳离子辐射之间呈线性相关。根据 D5% 和 D37% 指标的 LET 响应,我们构建了一个包含四个自由参数的模型,根据给定 C 离子 LET 值的光子参考 LQM 参数 αX 和 βX,预测细胞的 C 离子线性二次模型(LQM)存活曲线参数 αC 和 βC。我们将模型的自由参数拟合到训练数据集,并通过留一交叉验证评估其准确性。我们进一步将我们的模型与局部效应模型(LEM)和微剂量测定动力学模型(MKM)进行了比较,将其预测结果与这些模型对 23-107 keV/μm 范围内临床相关 LET 值的预测结果进行了比较。根据细胞系和剂量的不同,我们的模型对 C 离子 RBE 的预测在 ±7%-15% 的范围内,与相同条件下的 LEM 和 MKM 相当。我们的模型具有与 LEM 或 MKM 相当的准确性,但所需的输入参数较少,计算成本较低,其实现非常简单,我们将其编码成电子表格。因此,在无法获得细胞特异性输入参数、无法实施模型或模型的计算效率至关重要的情况下,我们的模型可以作为这些机理模型的实用替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Automated planning of curved needle channels in 3D printed patient-tailored applicators for cervical cancer brachytherapy. Comparison of contrast-enhanced ultrasound imaging (CEUS) and super-resolution ultrasound (SRU) for the quantification of ischaemia flow redistribution: a theoretical study. Novel frequency selective B1focusing passive Lenz resonators for substantial MRI signal-to-noise ratio amplification. On the microdosimetric characterisation of the radiation quality of a carbon-ion beam and the effect of the target volume thickness. Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1