ℓ1$$ {\ell}_1 $$ -Penalized Multinomial Regression: Estimation, Inference, and Prediction, With an Application to Risk Factor Identification for Different Dementia Subtypes.
Ye Tian, Henry Rusinek, Arjun V Masurkar, Yang Feng
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\"><ns0:math> <ns0:semantics> <ns0:mrow> <ns0:msub><ns0:mrow><ns0:mi>ℓ</ns0:mi></ns0:mrow> <ns0:mrow><ns0:mn>1</ns0:mn></ns0:mrow> </ns0:msub> </ns0:mrow> <ns0:annotation>$$ {\\ell}_1 $$</ns0:annotation></ns0:semantics> </ns0:math> -Penalized Multinomial Regression: Estimation, Inference, and Prediction, With an Application to Risk Factor Identification for Different Dementia Subtypes.","authors":"Ye Tian, Henry Rusinek, Arjun V Masurkar, Yang Feng","doi":"10.1002/sim.10263","DOIUrl":null,"url":null,"abstract":"<p><p>High-dimensional multinomial regression models are very useful in practice but have received less research attention than logistic regression models, especially from the perspective of statistical inference. In this work, we analyze the estimation and prediction error of the contrast-based <math> <semantics> <mrow> <msub><mrow><mi>ℓ</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {\\ell}_1 $$</annotation></semantics> </math> -penalized multinomial regression model and extend the debiasing method to the multinomial case, providing a valid confidence interval for each coefficient and <math> <semantics><mrow><mi>p</mi></mrow> <annotation>$$ p $$</annotation></semantics> </math> value of the individual hypothesis test. We also examine cases of model misspecification and non-identically distributed data to demonstrate the robustness of our method when some assumptions are violated. We apply the debiasing method to identify important predictors in the progression into dementia of different subtypes. Results from extensive simulations show the superiority of the debiasing method compared to other inference methods.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10263","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-dimensional multinomial regression models are very useful in practice but have received less research attention than logistic regression models, especially from the perspective of statistical inference. In this work, we analyze the estimation and prediction error of the contrast-based -penalized multinomial regression model and extend the debiasing method to the multinomial case, providing a valid confidence interval for each coefficient and value of the individual hypothesis test. We also examine cases of model misspecification and non-identically distributed data to demonstrate the robustness of our method when some assumptions are violated. We apply the debiasing method to identify important predictors in the progression into dementia of different subtypes. Results from extensive simulations show the superiority of the debiasing method compared to other inference methods.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.