A Novel Machine Learning-Based Predictive Model of Clinically Significant Prostate Cancer and Online Risk Calculator.

IF 2.1 3区 医学 Q2 UROLOGY & NEPHROLOGY Urology Pub Date : 2024-11-11 DOI:10.1016/j.urology.2024.11.001
Flavio Vasconcelos Ordones, Paulo Roberto Kawano, Lodewikus Vermeulen, Ali Hooshyari, David Scholtz, Peter John Gilling, Darren Foreman, Basil Kaufmann, Cedric Poyet, Michael Gorin, Abner Macola Pacheco Barbosa, Naila Camila da Rocha, Luis Gustavo Modelli de Andrade
{"title":"A Novel Machine Learning-Based Predictive Model of Clinically Significant Prostate Cancer and Online Risk Calculator.","authors":"Flavio Vasconcelos Ordones, Paulo Roberto Kawano, Lodewikus Vermeulen, Ali Hooshyari, David Scholtz, Peter John Gilling, Darren Foreman, Basil Kaufmann, Cedric Poyet, Michael Gorin, Abner Macola Pacheco Barbosa, Naila Camila da Rocha, Luis Gustavo Modelli de Andrade","doi":"10.1016/j.urology.2024.11.001","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To create a machine learning predictive model combining PI-RADS score, PSA density, and clinical variables to predict clinically significant prostate cancer (csPCa).</p><p><strong>Methods: </strong>We evaluated a cohort of patients who underwent prostate biopsy for suspected prostate cancer (PCa) in New Zealand, Australia, and Switzerland. We collected data on age, body mass index (BMI), PSA level, prostate volume, PSA density (PSAD), PI-RADS scores, previous biopsy, and corresponding histology results. The dataset was divided into derivation (training) and validation (test) sets using random splits. An independent dataset was obtained from the Harvard Dataverse for external validation. A cohort of 1272 patients was analyzed. We fitted a Lasso model, XGBoost, and LightGBM to the training set and assessed their accuracy.</p><p><strong>Results: </strong>All models demonstrated ROC AUC values ranging from 0.830 to 0.851. LightGBM was considered the superior model, with an ROC of 0.851 [95%CI: 0.804 - 0.897] in the test set and 0.818 [95% CI: 0.798 - 0.831] in the external dataset. The most important variable was PI-RADS, followed by PSA density, history of previous biopsy, age, and BMI.</p><p><strong>Conclusions: </strong>We developed a predictive model for detecting csPCa that exhibited a high ROC-AUC value for internal and external validations. This suggests that the integration of the clinical parameters outperformed each individual predictor. Additionally, the model demonstrated good calibration metrics, indicative of a more balanced model than the existing models.</p>","PeriodicalId":23415,"journal":{"name":"Urology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.urology.2024.11.001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To create a machine learning predictive model combining PI-RADS score, PSA density, and clinical variables to predict clinically significant prostate cancer (csPCa).

Methods: We evaluated a cohort of patients who underwent prostate biopsy for suspected prostate cancer (PCa) in New Zealand, Australia, and Switzerland. We collected data on age, body mass index (BMI), PSA level, prostate volume, PSA density (PSAD), PI-RADS scores, previous biopsy, and corresponding histology results. The dataset was divided into derivation (training) and validation (test) sets using random splits. An independent dataset was obtained from the Harvard Dataverse for external validation. A cohort of 1272 patients was analyzed. We fitted a Lasso model, XGBoost, and LightGBM to the training set and assessed their accuracy.

Results: All models demonstrated ROC AUC values ranging from 0.830 to 0.851. LightGBM was considered the superior model, with an ROC of 0.851 [95%CI: 0.804 - 0.897] in the test set and 0.818 [95% CI: 0.798 - 0.831] in the external dataset. The most important variable was PI-RADS, followed by PSA density, history of previous biopsy, age, and BMI.

Conclusions: We developed a predictive model for detecting csPCa that exhibited a high ROC-AUC value for internal and external validations. This suggests that the integration of the clinical parameters outperformed each individual predictor. Additionally, the model demonstrated good calibration metrics, indicative of a more balanced model than the existing models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的新型临床前列腺癌预测模型和在线风险计算器。
目的:创建一个结合 PI-RADS 评分、PSA 密度和临床变量的机器学习预测模型:创建一个结合 PI-RADS 评分、PSA 密度和临床变量的机器学习预测模型,以预测有临床意义的前列腺癌(csPCa):我们评估了新西兰、澳大利亚和瑞士因疑似前列腺癌(PCa)而接受前列腺活检的一组患者。我们收集了有关年龄、体重指数(BMI)、前列腺特异性抗原(PSA)水平、前列腺体积、前列腺特异性抗原密度(PSAD)、PI-RADS 评分、既往活检以及相应组织学结果的数据。数据集采用随机拆分法分为衍生集(训练集)和验证集(测试集)。此外,还从哈佛数据宇宙(Harvard Dataverse)获得了一个独立的数据集,用于外部验证。共分析了 1272 例患者。我们将 Lasso 模型、XGBoost 和 LightGBM 应用于训练集,并评估了它们的准确性:所有模型的 ROC AUC 值在 0.830 到 0.851 之间。LightGBM 被认为是更优越的模型,其测试集的 ROC 值为 0.851 [95%CI: 0.804 - 0.897],外部数据集的 ROC 值为 0.818 [95%CI: 0.798 - 0.831]。最重要的变量是 PI-RADS,其次是 PSA 密度、既往活检史、年龄和体重指数:我们建立了一个检测 csPCa 的预测模型,该模型在内部和外部验证中均表现出较高的 ROC-AUC 值。这表明整合临床参数的效果优于每个单独的预测指标。此外,该模型还显示出良好的校准指标,表明该模型比现有模型更加平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Urology
Urology 医学-泌尿学与肾脏学
CiteScore
3.30
自引率
9.50%
发文量
716
审稿时长
59 days
期刊介绍: Urology is a monthly, peer–reviewed journal primarily for urologists, residents, interns, nephrologists, and other specialists interested in urology The mission of Urology®, the "Gold Journal," is to provide practical, timely, and relevant clinical and basic science information to physicians and researchers practicing the art of urology worldwide. Urology® publishes original articles relating to adult and pediatric clinical urology as well as to clinical and basic science research. Topics in Urology® include pediatrics, surgical oncology, radiology, pathology, erectile dysfunction, infertility, incontinence, transplantation, endourology, andrology, female urology, reconstructive surgery, and medical oncology, as well as relevant basic science issues. Special features include rapid communication of important timely issues, surgeon''s workshops, interesting case reports, surgical techniques, clinical and basic science review articles, guest editorials, letters to the editor, book reviews, and historical articles in urology.
期刊最新文献
Editorial Comment on "Evaluating Decision Regret in Patients Who Have Undergone Sacral Neuromodulation". Reply to Editorial Comment on "Indwelling urological device biofilm composition and characteristics in the presence and absence of infection. The Road from Abstract to Publication in Pediatric Urology. Accuracy of a ChatGPT in Diagnosing Urologic Conditions from Cross-Sectional Imaging. Contrast-enhanced ultrasound imaging following transperineal laser ablation for lower urinary tract symptoms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1