Patient-centric knowledge graphs: a survey of current methods, challenges, and applications.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2024-10-23 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1388479
Hassan S Al Khatib, Subash Neupane, Harish Kumar Manchukonda, Noorbakhsh Amiri Golilarz, Sudip Mittal, Amin Amirlatifi, Shahram Rahimi
{"title":"Patient-centric knowledge graphs: a survey of current methods, challenges, and applications.","authors":"Hassan S Al Khatib, Subash Neupane, Harish Kumar Manchukonda, Noorbakhsh Amiri Golilarz, Sudip Mittal, Amin Amirlatifi, Shahram Rahimi","doi":"10.3389/frai.2024.1388479","DOIUrl":null,"url":null,"abstract":"<p><p>Patient-Centric Knowledge Graphs (PCKGs) represent an important shift in healthcare that focuses on individualized patient care by mapping the patient's health information holistically and multi-dimensionally. PCKGs integrate various types of health data to provide healthcare professionals with a comprehensive understanding of a patient's health, enabling more personalized and effective care. This literature review explores the methodologies, challenges, and opportunities associated with PCKGs, focusing on their role in integrating disparate healthcare data and enhancing patient care through a unified health perspective. In addition, this review also discusses the complexities of PCKG development, including ontology design, data integration techniques, knowledge extraction, and structured representation of knowledge. It highlights advanced techniques such as reasoning, semantic search, and inference mechanisms essential in constructing and evaluating PCKGs for actionable healthcare insights. We further explore the practical applications of PCKGs in personalized medicine, emphasizing their significance in improving disease prediction and formulating effective treatment plans. Overall, this review provides a foundational perspective on the current state-of-the-art and best practices of PCKGs, guiding future research and applications in this dynamic field.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1388479"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558794/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1388479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Patient-Centric Knowledge Graphs (PCKGs) represent an important shift in healthcare that focuses on individualized patient care by mapping the patient's health information holistically and multi-dimensionally. PCKGs integrate various types of health data to provide healthcare professionals with a comprehensive understanding of a patient's health, enabling more personalized and effective care. This literature review explores the methodologies, challenges, and opportunities associated with PCKGs, focusing on their role in integrating disparate healthcare data and enhancing patient care through a unified health perspective. In addition, this review also discusses the complexities of PCKG development, including ontology design, data integration techniques, knowledge extraction, and structured representation of knowledge. It highlights advanced techniques such as reasoning, semantic search, and inference mechanisms essential in constructing and evaluating PCKGs for actionable healthcare insights. We further explore the practical applications of PCKGs in personalized medicine, emphasizing their significance in improving disease prediction and formulating effective treatment plans. Overall, this review provides a foundational perspective on the current state-of-the-art and best practices of PCKGs, guiding future research and applications in this dynamic field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以患者为中心的知识图谱:当前方法、挑战和应用调查。
以患者为中心的知识图谱(PCKGs)代表了医疗保健领域的一个重要转变,它通过全面、多维度地映射患者的健康信息,重点关注对患者的个性化护理。PCKGs 整合了各种类型的健康数据,使医疗保健专业人员能够全面了解患者的健康状况,从而提供更加个性化和有效的护理。本文献综述探讨了与 PCKG 相关的方法、挑战和机遇,重点关注 PCKG 在整合不同医疗数据和通过统一的健康视角加强患者护理方面的作用。此外,本综述还讨论了 PCKG 开发的复杂性,包括本体设计、数据集成技术、知识提取和知识的结构化表示。综述重点介绍了推理、语义搜索和推理机制等高级技术,这些技术对于构建和评估 PCKG 以获得可操作的医疗见解至关重要。我们进一步探讨了 PCKG 在个性化医疗中的实际应用,强调了 PCKG 在改善疾病预测和制定有效治疗方案方面的重要意义。总之,本综述为 PCKGs 的当前先进水平和最佳实践提供了一个基础性视角,为这一充满活力的领域的未来研究和应用提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Advancing smart city factories: enhancing industrial mechanical operations via deep learning techniques. Inpainting of damaged temple murals using edge- and line-guided diffusion patch GAN. Catalyzing IVF outcome prediction: exploring advanced machine learning paradigms for enhanced success rate prognostication. Predicting patient reported outcome measures: a scoping review for the artificial intelligence-guided patient preference predictor. A generative AI-driven interactive listening assessment task.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1