Jonathan C Savakus, T Skacel, M Jindia, Y Al-Madani, L Spoletini, R C Ross, A Gehring, D J Stinner
{"title":"Biomechanical validation of the field-expedient pelvic splint.","authors":"Jonathan C Savakus, T Skacel, M Jindia, Y Al-Madani, L Spoletini, R C Ross, A Gehring, D J Stinner","doi":"10.1136/military-2024-002815","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Morbidity and mortality from pelvic ring injuries can be mitigated by early and effective external pelvic stabilisation. The field-expedient pelvic splint (FEPS) is a recently described technique to improvise an effective pelvic binder for an austere environment. This technique has not been biomechanically validated. We hypothesise that the FEPS will be biomechanically equivalent to a commercially available pelvic binder routinely used in the austere environment.</p><p><strong>Methods: </strong>Compressive force generation of the FEPS was measured using a commercial load frame. A SAM Pelvic Sling was used as a control. The FEPS was tested for initial force generation, persistence of force generation over a 6-hour longitudinal test period and force generation after repeated assembly/disassembly.</p><p><strong>Results: </strong>The FEPS generated 203N (±7N) with one windlass turn and 420N (±34N) with two windlass turns. The SAM Pelvic Sling generated 197N (±11N) of force. There was no significant difference between FEPS after one windlass crank and the SAM Pelvic Sling but the force generated by the FEPS with two windlass cranks was significantly higher than the SAM Pelvic Sling. Longitudinal testing showed that after 6 hours of continuous compression, the FEPS generated 189N (±19N) and the force generated at hour 6 was not significantly different from the initial force generated by SAM Pelvic Sling. Reusability testing showed no significant difference with force generation by the FEPS after repeated assembly/disassembly with one crank of the windlass but there was a significantly increased force generation by FEPS after repeated use trials with two cranks of the windlass.</p><p><strong>Conclusion: </strong>The FEPS exerted equivalent pelvic compressive forces to its commercial equivalent and this force generation persists at effective levels over a 6-hour time course. The FEPS remained effective after repeated use. The FEPS is a viable alternative in the austere or resource-limited environment for temporary pelvic stabilisation.</p>","PeriodicalId":48485,"journal":{"name":"Bmj Military Health","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bmj Military Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/military-2024-002815","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Morbidity and mortality from pelvic ring injuries can be mitigated by early and effective external pelvic stabilisation. The field-expedient pelvic splint (FEPS) is a recently described technique to improvise an effective pelvic binder for an austere environment. This technique has not been biomechanically validated. We hypothesise that the FEPS will be biomechanically equivalent to a commercially available pelvic binder routinely used in the austere environment.
Methods: Compressive force generation of the FEPS was measured using a commercial load frame. A SAM Pelvic Sling was used as a control. The FEPS was tested for initial force generation, persistence of force generation over a 6-hour longitudinal test period and force generation after repeated assembly/disassembly.
Results: The FEPS generated 203N (±7N) with one windlass turn and 420N (±34N) with two windlass turns. The SAM Pelvic Sling generated 197N (±11N) of force. There was no significant difference between FEPS after one windlass crank and the SAM Pelvic Sling but the force generated by the FEPS with two windlass cranks was significantly higher than the SAM Pelvic Sling. Longitudinal testing showed that after 6 hours of continuous compression, the FEPS generated 189N (±19N) and the force generated at hour 6 was not significantly different from the initial force generated by SAM Pelvic Sling. Reusability testing showed no significant difference with force generation by the FEPS after repeated assembly/disassembly with one crank of the windlass but there was a significantly increased force generation by FEPS after repeated use trials with two cranks of the windlass.
Conclusion: The FEPS exerted equivalent pelvic compressive forces to its commercial equivalent and this force generation persists at effective levels over a 6-hour time course. The FEPS remained effective after repeated use. The FEPS is a viable alternative in the austere or resource-limited environment for temporary pelvic stabilisation.