Sepideh Amiri, Reza Karimzadeh, Tomaž Vrtovec, Erik Gudmann Steuble Brandt, Henrik S Thomsen, Michael Brun Andersen, Christoph Felix Müller, Anders Bertil Rodell, Bulat Ibragimov
{"title":"Centerline-guided reinforcement learning model for pancreatic duct identifications.","authors":"Sepideh Amiri, Reza Karimzadeh, Tomaž Vrtovec, Erik Gudmann Steuble Brandt, Henrik S Thomsen, Michael Brun Andersen, Christoph Felix Müller, Anders Bertil Rodell, Bulat Ibragimov","doi":"10.1117/1.JMI.11.6.064002","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Pancreatic ductal adenocarcinoma is forecast to become the second most significant cause of cancer mortality as the number of patients with cancer in the main duct of the pancreas grows, and measurement of the pancreatic duct diameter from medical images has been identified as relevant for its early diagnosis.</p><p><strong>Approach: </strong>We propose an automated pancreatic duct centerline tracing method from computed tomography (CT) images that is based on deep reinforcement learning, which employs an artificial agent to interact with the environment and calculates rewards by combining the distances from the target and the centerline. A deep neural network is implemented to forecast step-wise values for each potential action. With the help of this mechanism, the agent can probe along the pancreatic duct centerline using the best possible navigational path. To enhance the tracing accuracy, we employ landmark-based registration, which enables the generation of a probability map of the pancreatic duct. Subsequently, we utilize a gradient-based method on the registered data to extract a probability map specifically indicating the centerline of the pancreatic duct.</p><p><strong>Results: </strong>Three datasets with a total of 115 CT images were used to evaluate the proposed method. Using image hold-out from the first two datasets, the method performance was 2.0, 4.0, and 2.1 mm measured in terms of the mean detection error, Hausdorff distance (HD), and root mean squared error (RMSE), respectively. Using the first two datasets for training and the third one for testing, the method accuracy was 2.2, 4.9, and 2.6 mm measured in terms of the mean detection error, HD, and RMSE, respectively.</p><p><strong>Conclusions: </strong>We present an algorithm for automated pancreatic duct centerline tracing using deep reinforcement learning. We observe that validation on an external dataset confirms the potential for practical utilization of the presented method.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 6","pages":"064002"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.6.064002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Pancreatic ductal adenocarcinoma is forecast to become the second most significant cause of cancer mortality as the number of patients with cancer in the main duct of the pancreas grows, and measurement of the pancreatic duct diameter from medical images has been identified as relevant for its early diagnosis.
Approach: We propose an automated pancreatic duct centerline tracing method from computed tomography (CT) images that is based on deep reinforcement learning, which employs an artificial agent to interact with the environment and calculates rewards by combining the distances from the target and the centerline. A deep neural network is implemented to forecast step-wise values for each potential action. With the help of this mechanism, the agent can probe along the pancreatic duct centerline using the best possible navigational path. To enhance the tracing accuracy, we employ landmark-based registration, which enables the generation of a probability map of the pancreatic duct. Subsequently, we utilize a gradient-based method on the registered data to extract a probability map specifically indicating the centerline of the pancreatic duct.
Results: Three datasets with a total of 115 CT images were used to evaluate the proposed method. Using image hold-out from the first two datasets, the method performance was 2.0, 4.0, and 2.1 mm measured in terms of the mean detection error, Hausdorff distance (HD), and root mean squared error (RMSE), respectively. Using the first two datasets for training and the third one for testing, the method accuracy was 2.2, 4.9, and 2.6 mm measured in terms of the mean detection error, HD, and RMSE, respectively.
Conclusions: We present an algorithm for automated pancreatic duct centerline tracing using deep reinforcement learning. We observe that validation on an external dataset confirms the potential for practical utilization of the presented method.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.