Use of machine learning to identify prognostic variables for outcomes in chronic low back pain treatment: a retrospective analysis.

IF 1.6 Q2 REHABILITATION Journal of Manual & Manipulative Therapy Pub Date : 2025-02-01 Epub Date: 2024-11-14 DOI:10.1080/10669817.2024.2424619
Carolyn Cheema, Jonathan Baldwin, Jason Rodeghero, Mark W Werneke, Jerry E Mioduski, Lynn Jeffries, Joseph Kucksdorf, Mark Shepherd, Carol Dionne, Ken Randall
{"title":"Use of machine learning to identify prognostic variables for outcomes in chronic low back pain treatment: a retrospective analysis.","authors":"Carolyn Cheema, Jonathan Baldwin, Jason Rodeghero, Mark W Werneke, Jerry E Mioduski, Lynn Jeffries, Joseph Kucksdorf, Mark Shepherd, Carol Dionne, Ken Randall","doi":"10.1080/10669817.2024.2424619","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Most patients seen in physical therapy (PT) clinics for low back pain (LBP) are treated for chronic low back pain (CLBP), yet PT interventions suggest minimal effectiveness. The Cochrane Back Review Group proposed 'Holy Grail' questions, one being: 'What are the most important (preventable) predictors of chronicity' for patients with LBP? Subsequently, prognostic factors influencing outcomes for CLBP have been described, however results remain conflicting due to methodological weaknesses.</p><p><strong>Methods: </strong>This retrospective observational cohort study examined prognostic risk factors for PT outcomes in CLBP treatment using a sub-type of AI. Bootstrap random forest supervised machine learning analysis was employed to identify the outcomes-associated variables.</p><p><strong>Results: </strong>The top variables identified as predictive were: FOTO™ predicted functional status (FS) change score; FOTO™ predicted number of visits; initial FS score, age; history of jogging/walking, obesity, and previous treatments; provider education level; medication use; gender.</p><p><strong>Conclusion: </strong>This article presents how AI can be used to predict risk prognostic factors in healthcare research. Improving predictive accuracy helps clinicians predict outcomes and determine most appropriate plans of care and may impact research attrition rates.</p>","PeriodicalId":47319,"journal":{"name":"Journal of Manual & Manipulative Therapy","volume":" ","pages":"63-72"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manual & Manipulative Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10669817.2024.2424619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"REHABILITATION","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Most patients seen in physical therapy (PT) clinics for low back pain (LBP) are treated for chronic low back pain (CLBP), yet PT interventions suggest minimal effectiveness. The Cochrane Back Review Group proposed 'Holy Grail' questions, one being: 'What are the most important (preventable) predictors of chronicity' for patients with LBP? Subsequently, prognostic factors influencing outcomes for CLBP have been described, however results remain conflicting due to methodological weaknesses.

Methods: This retrospective observational cohort study examined prognostic risk factors for PT outcomes in CLBP treatment using a sub-type of AI. Bootstrap random forest supervised machine learning analysis was employed to identify the outcomes-associated variables.

Results: The top variables identified as predictive were: FOTO™ predicted functional status (FS) change score; FOTO™ predicted number of visits; initial FS score, age; history of jogging/walking, obesity, and previous treatments; provider education level; medication use; gender.

Conclusion: This article presents how AI can be used to predict risk prognostic factors in healthcare research. Improving predictive accuracy helps clinicians predict outcomes and determine most appropriate plans of care and may impact research attrition rates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习识别慢性腰背痛治疗结果的预后变量:回顾性分析。
目的:在物理治疗(PT)诊所就诊的大多数腰背痛(LBP)患者都是因慢性腰背痛(CLBP)而接受治疗的,但物理治疗干预的效果却微乎其微。科克伦背部回顾小组提出了 "圣杯 "问题,其中一个问题是:"对腰背痛患者而言,最重要的(可预防的)慢性病预测因素是什么?随后,影响慢性腰椎间盘突出症预后的因素已被描述,但由于方法上的缺陷,结果仍然相互矛盾:这项回顾性观察队列研究利用人工智能的一种子类型,对CLBP治疗中PT结果的预后风险因素进行了研究。研究采用了 Bootstrap 随机森林监督机器学习分析来确定与结果相关的变量:结果:被确定为具有预测性的首要变量是FOTO™预测功能状态(FS)变化得分;FOTO™预测就诊次数;初始FS得分;年龄;慢跑/步行史;肥胖;既往治疗史;提供者教育水平;药物使用情况;性别:本文介绍了如何在医疗保健研究中利用人工智能预测风险预后因素。提高预测准确性有助于临床医生预测结果和确定最合适的护理计划,并可能影响研究人员的流失率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
20.00%
发文量
55
期刊介绍: The Journal of Manual & Manipulative Therapy is an international peer-reviewed journal dedicated to the publication of original research, case reports, and reviews of the literature that contribute to the advancement of knowledge in the field of manual therapy, clinical research, therapeutic practice, and academic training. In addition, each issue features an editorial written by the editor or a guest editor, media reviews, thesis reviews, and abstracts of current literature. Areas of interest include: •Thrust and non-thrust manipulation •Neurodynamic assessment and treatment •Diagnostic accuracy and classification •Manual therapy-related interventions •Clinical decision-making processes •Understanding clinimetrics for the clinician
期刊最新文献
Cervicothoracic junction mobilization versus autogenic muscle energy technique for chronic mechanical neck pain: A randomized controlled trial. Short-term effectiveness of dry needling on pain and ankle range of motion in athletes with medial tibial stress syndrome- a randomized control trial. Spinal mobilization in infants reconsidered. Author response to Eric Saedt "Spinal mobilization in infants reconsidered". Tendential and unscientific opinion regarding spinal manipulative therapy in the pediatric population.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1