Decrease in decision noise from adolescence into adulthood mediates an increase in more sophisticated choice behaviors and performance gain.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences PLoS Biology Pub Date : 2024-11-14 eCollection Date: 2024-11-01 DOI:10.1371/journal.pbio.3002877
Vanessa Scholz, Maria Waltmann, Nadine Herzog, Annette Horstmann, Lorenz Deserno
{"title":"Decrease in decision noise from adolescence into adulthood mediates an increase in more sophisticated choice behaviors and performance gain.","authors":"Vanessa Scholz, Maria Waltmann, Nadine Herzog, Annette Horstmann, Lorenz Deserno","doi":"10.1371/journal.pbio.3002877","DOIUrl":null,"url":null,"abstract":"<p><p>Learning and decision-making undergo substantial developmental changes, with adolescence being a particular vulnerable window of opportunity. In adolescents, developmental changes in specific choice behaviors have been observed (e.g., goal-directed behavior, motivational influences over choice). Elevated levels of decision noise, i.e., choosing suboptimal options, were reported consistently in adolescents. However, it remains unknown whether these observations, the development of specific and more sophisticated choice processes and higher decision noise, are independent or related. It is conceivable, but has not yet been investigated, that the development of specific choice processes might be impacted by age-dependent changes in decision noise. To answer this, we examined 93 participants (12 to 42 years) who completed 3 reinforcement learning (RL) tasks: a motivational Go/NoGo task assessing motivational influences over choices, a reversal learning task capturing adaptive decision-making in response to environmental changes, and a sequential choice task measuring goal-directed behavior. This allowed testing of (1) cross-task generalization of computational parameters focusing on decision noise; and (2) assessment of mediation effects of noise on specific choice behaviors. Firstly, we found only noise levels to be strongly correlated across RL tasks. Second, and critically, noise levels mediated age-dependent increases in more sophisticated choice behaviors and performance gain. Our findings provide novel insights into the computational processes underlying developmental changes in decision-making: namely a vital role of seemingly unspecific changes in noise in the specific development of more complex choice components. Studying the neurocomputational mechanisms of how varying levels of noise impact distinct aspects of learning and decision processes may also be key to better understand the developmental onset of psychiatric diseases.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002877"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563475/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002877","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Learning and decision-making undergo substantial developmental changes, with adolescence being a particular vulnerable window of opportunity. In adolescents, developmental changes in specific choice behaviors have been observed (e.g., goal-directed behavior, motivational influences over choice). Elevated levels of decision noise, i.e., choosing suboptimal options, were reported consistently in adolescents. However, it remains unknown whether these observations, the development of specific and more sophisticated choice processes and higher decision noise, are independent or related. It is conceivable, but has not yet been investigated, that the development of specific choice processes might be impacted by age-dependent changes in decision noise. To answer this, we examined 93 participants (12 to 42 years) who completed 3 reinforcement learning (RL) tasks: a motivational Go/NoGo task assessing motivational influences over choices, a reversal learning task capturing adaptive decision-making in response to environmental changes, and a sequential choice task measuring goal-directed behavior. This allowed testing of (1) cross-task generalization of computational parameters focusing on decision noise; and (2) assessment of mediation effects of noise on specific choice behaviors. Firstly, we found only noise levels to be strongly correlated across RL tasks. Second, and critically, noise levels mediated age-dependent increases in more sophisticated choice behaviors and performance gain. Our findings provide novel insights into the computational processes underlying developmental changes in decision-making: namely a vital role of seemingly unspecific changes in noise in the specific development of more complex choice components. Studying the neurocomputational mechanisms of how varying levels of noise impact distinct aspects of learning and decision processes may also be key to better understand the developmental onset of psychiatric diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从青春期到成年期,决策噪音的减少会促进更复杂选择行为的增加和成绩的提高。
学习和决策会经历巨大的发展变化,而青春期是一个特别脆弱的机会窗口。在青少年中,特定选择行为的发展变化已被观察到(如目标导向行为、对选择的动机影响)。据报道,青少年的决策噪音(即选择次优选项)水平不断升高。然而,这些观察结果、特定和更复杂的选择过程的发展以及更高的决策噪音是相互独立还是相互关联,目前仍不得而知。可以想象,特定选择过程的发展可能会受到与年龄相关的决策噪音变化的影响,但这一问题尚未得到研究。为了回答这个问题,我们对完成了 3 项强化学习(RL)任务的 93 名参与者(12 至 42 岁)进行了研究:一项评估动机对选择的影响的 "去/不去"(Go/NoGo)任务,一项捕捉环境变化时适应性决策的逆转学习任务,以及一项测量目标导向行为的顺序选择任务。这样就可以测试(1)以决策噪音为重点的计算参数的跨任务通用性;以及(2)评估噪音对特定选择行为的中介效应。首先,我们发现只有噪音水平在不同的 RL 任务中具有很强的相关性。其次,也是至关重要的一点是,噪声水平对更复杂选择行为和成绩提高的影响与年龄有关。我们的研究结果为决策发展变化背后的计算过程提供了新的见解:即噪声中看似非特异性的变化在更复杂的选择成分的特定发展中起着至关重要的作用。研究不同水平的噪声如何影响学习和决策过程的不同方面的神经计算机制,可能也是更好地理解精神疾病在发育过程中发病的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
期刊最新文献
Correction: Dog-human vocal interactions match dogs' sensory-motor tuning. Thalamic spindles and Up states coordinate cortical and hippocampal co-ripples in humans. Trajectories of human brain functional connectome maturation across the birth transition. Dopamine neurons that inform Drosophila olfactory memory have distinct, acute functions driving attraction and aversion. Excess mortality of infected ectotherms induced by warming depends on pathogen kingdom and evolutionary history.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1