Spatiotemporal requirements of nuclear β-catenin define early sea urchin embryogenesis.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences PLoS Biology Pub Date : 2024-11-12 DOI:10.1371/journal.pbio.3002880
Guy Lhomond, Michael Schubert, Jenifer Croce
{"title":"Spatiotemporal requirements of nuclear β-catenin define early sea urchin embryogenesis.","authors":"Guy Lhomond, Michael Schubert, Jenifer Croce","doi":"10.1371/journal.pbio.3002880","DOIUrl":null,"url":null,"abstract":"<p><p>Establishment of the 3 primordial germ layers (ectoderm, endoderm, and mesoderm) during early animal development represents an essential prerequisite for the emergence of properly patterned embryos. β-catenin is an ancient protein that is known to play essential roles in this process. However, these roles have chiefly been established through inhibition of β-catenin translation or function at the time of fertilization. Comprehensive analyses reporting the totality of functions played by nuclear β-catenin, during the early embryogenesis of a given animal, i.e., at different developmental stages and in different germ layers, are thus still lacking. In this study, we used an inducible, conditional knockdown system in the sea urchin to characterize all possible requirements of β-catenin for germ layer establishment and patterning. By blocking β-catenin protein production starting at 7 different time points of early development, between fertilization and 12 h post fertilization, we established a clear correlation between the position of a germ layer along the primary embryonic axis (the animal-vegetal axis) and its dependence on nuclear β-catenin activity. For example, in the vegetal hemisphere, we determined that the 3 germ layers (skeletogenic mesoderm, non-skeletogenic mesoderm, and endoderm) require distinct and highly specific durations of β-catenin production for their respective specification, with the most vegetal germ layer, the skeletogenic mesoderm, requiring the shortest duration. Likewise, for the 2 animal territories (ectoderm and anterior neuroectoderm), we established that their restriction, along the animal-vegetal axis, relies on different durations of β-catenin production, and that the longest duration is for the most animal territory, the anterior neuroectoderm. Moreover, we found that 2 of the vegetal germ layers, the non-skeletogenic mesoderm and the endoderm, further require a prolonged period of nuclear β-catenin activity, after their specification, to maintain their respective germ layer identities through time. Finally, we determined that restriction of the anterior neuroectoderm territory depends on at least 2 nuclear β-catenin-dependent inputs and a nuclear β-catenin-independent mechanism. Taken together, this work is the first to comprehensively define the spatiotemporal requirements of β-catenin during the early embryogenesis of a single animal, the sea urchin Paracentrotus lividus, thereby providing new experimental evidence for a better understanding of the roles played by this evolutionary conserved protein during animal development.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002880"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002880","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Establishment of the 3 primordial germ layers (ectoderm, endoderm, and mesoderm) during early animal development represents an essential prerequisite for the emergence of properly patterned embryos. β-catenin is an ancient protein that is known to play essential roles in this process. However, these roles have chiefly been established through inhibition of β-catenin translation or function at the time of fertilization. Comprehensive analyses reporting the totality of functions played by nuclear β-catenin, during the early embryogenesis of a given animal, i.e., at different developmental stages and in different germ layers, are thus still lacking. In this study, we used an inducible, conditional knockdown system in the sea urchin to characterize all possible requirements of β-catenin for germ layer establishment and patterning. By blocking β-catenin protein production starting at 7 different time points of early development, between fertilization and 12 h post fertilization, we established a clear correlation between the position of a germ layer along the primary embryonic axis (the animal-vegetal axis) and its dependence on nuclear β-catenin activity. For example, in the vegetal hemisphere, we determined that the 3 germ layers (skeletogenic mesoderm, non-skeletogenic mesoderm, and endoderm) require distinct and highly specific durations of β-catenin production for their respective specification, with the most vegetal germ layer, the skeletogenic mesoderm, requiring the shortest duration. Likewise, for the 2 animal territories (ectoderm and anterior neuroectoderm), we established that their restriction, along the animal-vegetal axis, relies on different durations of β-catenin production, and that the longest duration is for the most animal territory, the anterior neuroectoderm. Moreover, we found that 2 of the vegetal germ layers, the non-skeletogenic mesoderm and the endoderm, further require a prolonged period of nuclear β-catenin activity, after their specification, to maintain their respective germ layer identities through time. Finally, we determined that restriction of the anterior neuroectoderm territory depends on at least 2 nuclear β-catenin-dependent inputs and a nuclear β-catenin-independent mechanism. Taken together, this work is the first to comprehensively define the spatiotemporal requirements of β-catenin during the early embryogenesis of a single animal, the sea urchin Paracentrotus lividus, thereby providing new experimental evidence for a better understanding of the roles played by this evolutionary conserved protein during animal development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核β-catenin对早期海胆胚胎发生的时空要求
β-catenin是一种古老的蛋白质,已知它在这一过程中发挥着重要作用。然而,这些作用主要是在受精时通过抑制β-catenin的翻译或功能而确立的。因此,目前还缺乏对核β-catenin在特定动物早期胚胎发育过程中,即在不同发育阶段和不同胚层中所发挥的全部功能的全面分析报告。在这项研究中,我们利用海胆的诱导性条件性基因敲除系统鉴定了β-catenin在胚层建立和模式化过程中的所有可能需求。通过阻断β-catenin蛋白在受精到受精后12小时之间早期发育过程中7个不同时间点的生成,我们发现胚层在初级胚轴(动物-植物轴)上的位置与其对核β-catenin活性的依赖之间存在明显的相关性。例如,在植物半球,我们发现3个胚层(成骨中胚层、非成骨中胚层和内胚层)在各自的规格化过程中需要不同且高度特异的β-catenin生成持续时间,其中最植物化的胚层(成骨中胚层)需要的时间最短。同样,对于两个动物胚层(外胚层和前神经外胚层),我们确定了它们沿动物-植物轴的限制依赖于不同的β-catenin生成持续时间,而最动物胚层(前神经外胚层)的β-catenin生成持续时间最长。此外,我们还发现植物胚层中的两个胚层,即非骨架形成的中胚层和内胚层,在形成后还需要较长时间的核β-catenin活性,才能长期保持各自胚层的特性。最后,我们确定,前神经外胚层区域的限制至少取决于两个依赖核β-catenin的输入和一个独立于核β-catenin的机制。综上所述,这项研究首次全面界定了β-catenin在单一动物--海胆(Paracentrotus lividus)--早期胚胎发生过程中的时空要求,从而为更好地理解这种进化保守蛋白在动物发育过程中所起的作用提供了新的实验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
期刊最新文献
A call for research to address the threat of paper mills. CD74 promotes the formation of an immunosuppressive tumor microenvironment in triple-negative breast cancer in mice by inducing the expansion of tolerogenic dendritic cells and regulatory B cells. Queer- and trans-inclusive faculty hiring-A call for change. How do mammals convert dynamic odor information into neural maps for landscape navigation? Stochastic models allow improved inference of microbiome interactions from time series data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1