Genome-wide methylation association study in monozygotic twins discordant for curve severity of adolescent idiopathic scoliosis.

IF 4.9 1区 医学 Q1 CLINICAL NEUROLOGY Spine Journal Pub Date : 2024-11-06 DOI:10.1016/j.spinee.2024.10.015
Zhichong Wu, Zhicheng Dai, Zhenhua Feng, Yong Qiu, Zezhang Zhu, Leilei Xu
{"title":"Genome-wide methylation association study in monozygotic twins discordant for curve severity of adolescent idiopathic scoliosis.","authors":"Zhichong Wu, Zhicheng Dai, Zhenhua Feng, Yong Qiu, Zezhang Zhu, Leilei Xu","doi":"10.1016/j.spinee.2024.10.015","DOIUrl":null,"url":null,"abstract":"<p><strong>Background context: </strong>Emerging evidence suggests that abnormal DNA methylation patterns may play a role in the progression of adolescent idiopathic scoliosis (AIS). However, the mechanisms underlying the influence of DNA methylation on curve severity remain largely unknown.</p><p><strong>Purpose: </strong>To characterize the DNA methylation profiles associated with the curve severity of AIS.</p><p><strong>Study design: </strong>Retrospective study with prospectively collected clinical data and blood samples.</p><p><strong>Methods: </strong>A total of 7 AIS monozygotic twin pairs discordant for curve severity were included. Genome-wide methylation profile from blood samples were quantified by Illumina Infinium MethylationEPIC BeadChip (850K chip). Cell type composition of the samples was estimated by RefbaseEWAS method. Differentially methylated CpG sites were identified through comparison between patients with low and high Cobb angle. We also performed a gene-based collapsing analysis using mCSEA by aggregating the CpG sites based on promoter region. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using clusterProfiler package.</p><p><strong>Results: </strong>Genome-wide DNA methylation analysis identified multiple differentially methylated positions across the genome. Gene-based collapsing analysis identified 212 differentially methylated genes (FDR adjusted p<0.05), most of which (186/212) were hypermethylated in the group with high Cobb angle. Some of the identified genes were well-documented in AIS literature, such as TBX1, PAX3 and LBX1. Functional enrichment analysis revealed that the differentially methylated genes (DMGs) were involved in pattern specification process, skeletal development, muscle function, neurotransmission and several signaling pathways (cAMP, Wnt and prolactin).</p><p><strong>Conclusions: </strong>The study represents the largest systematic epigenomic analyses of monozygotic twins discordant for curve severity and supports the important role of altered DNA methylation in AIS.</p><p><strong>Clinical significance: </strong>The identified CpG sites provide insight into novel biomarkers predicting curve progression of AIS. Furthermore, the differentially methylated genes and enriched pathways may serve as interventional therapy target for AIS patients.</p>","PeriodicalId":49484,"journal":{"name":"Spine Journal","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.spinee.2024.10.015","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background context: Emerging evidence suggests that abnormal DNA methylation patterns may play a role in the progression of adolescent idiopathic scoliosis (AIS). However, the mechanisms underlying the influence of DNA methylation on curve severity remain largely unknown.

Purpose: To characterize the DNA methylation profiles associated with the curve severity of AIS.

Study design: Retrospective study with prospectively collected clinical data and blood samples.

Methods: A total of 7 AIS monozygotic twin pairs discordant for curve severity were included. Genome-wide methylation profile from blood samples were quantified by Illumina Infinium MethylationEPIC BeadChip (850K chip). Cell type composition of the samples was estimated by RefbaseEWAS method. Differentially methylated CpG sites were identified through comparison between patients with low and high Cobb angle. We also performed a gene-based collapsing analysis using mCSEA by aggregating the CpG sites based on promoter region. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using clusterProfiler package.

Results: Genome-wide DNA methylation analysis identified multiple differentially methylated positions across the genome. Gene-based collapsing analysis identified 212 differentially methylated genes (FDR adjusted p<0.05), most of which (186/212) were hypermethylated in the group with high Cobb angle. Some of the identified genes were well-documented in AIS literature, such as TBX1, PAX3 and LBX1. Functional enrichment analysis revealed that the differentially methylated genes (DMGs) were involved in pattern specification process, skeletal development, muscle function, neurotransmission and several signaling pathways (cAMP, Wnt and prolactin).

Conclusions: The study represents the largest systematic epigenomic analyses of monozygotic twins discordant for curve severity and supports the important role of altered DNA methylation in AIS.

Clinical significance: The identified CpG sites provide insight into novel biomarkers predicting curve progression of AIS. Furthermore, the differentially methylated genes and enriched pathways may serve as interventional therapy target for AIS patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
青少年特发性脊柱侧凸曲线严重程度不一致的单卵双胞胎的全基因组甲基化关联研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Spine Journal
Spine Journal 医学-临床神经学
CiteScore
8.20
自引率
6.70%
发文量
680
审稿时长
13.1 weeks
期刊介绍: The Spine Journal, the official journal of the North American Spine Society, is an international and multidisciplinary journal that publishes original, peer-reviewed articles on research and treatment related to the spine and spine care, including basic science and clinical investigations. It is a condition of publication that manuscripts submitted to The Spine Journal have not been published, and will not be simultaneously submitted or published elsewhere. The Spine Journal also publishes major reviews of specific topics by acknowledged authorities, technical notes, teaching editorials, and other special features, Letters to the Editor-in-Chief are encouraged.
期刊最新文献
MRI spine request form enhancement and auto protocoling using a secure institutional large language model. A 'people-like-me' approach to predict individual recovery following lumbar microdiscectomy and physical therapy for lumbar radiculopathy. Beyond a ferroptosis inducer: erastin can suppress nutrient deprivation induced cell death in the intervertebral disc. Civilian ballistic spinal cord injuries versus blunt trauma: comparative analysis of clinical characteristics, management, and outcomes. Genome-wide methylation association study in monozygotic twins discordant for curve severity of adolescent idiopathic scoliosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1