{"title":"Metabolically inducing defects in DNA repair sensitizes BRCA–wild-type cancer cells to replication stress","authors":"Kenji Watanabe, Tatsuro Yamamoto, Tomoko Fujita, Shinjiro Hino, Yuko Hino, Kanami Yamazaki, Yoshimi Ohashi, Shun Sakuraba, Hidetoshi Kono, Mitsuyoshi Nakao, Koji Ochiai, Shingo Dan, Noriko Saitoh","doi":"10.1126/scisignal.adl6445","DOIUrl":null,"url":null,"abstract":"<div >Metabolic reprogramming from oxidative respiration to glycolysis is generally considered to be advantageous for tumor initiation and progression. However, we found that breast cancer cells forced to perform glycolysis acquired a vulnerability to PARP inhibitors. Small-molecule inhibition of mitochondrial respiration—using glyceollin I, metformin, or phenformin—induced overproduction of the oncometabolite lactate, which acidified the extracellular milieu and repressed the expression of homologous recombination (HR)–associated DNA repair genes. These serial events created so-called “BRCAness,” in which cells exhibit an HR deficiency phenotype despite lacking germline mutations in HR genes such as <i>BRCA1</i> and <i>BRCA2</i>, and, thus, sensitized the cancer cells to clinically available poly(ADP-ribose) polymerase inhibitors. The increase in lactate repressed HR-associated gene expression by decreasing histone acetylation. These effects were selective to breast cancer cells; normal epithelial cells retained HR proficiency and cell viability. These mechanistic insights into the BRCAness-prone properties of breast cancer cells support the therapeutic utility and cancer cell–specific potential of mitochondria-targeting drugs.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"17 862","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://www.science.org/doi/10.1126/scisignal.adl6445","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic reprogramming from oxidative respiration to glycolysis is generally considered to be advantageous for tumor initiation and progression. However, we found that breast cancer cells forced to perform glycolysis acquired a vulnerability to PARP inhibitors. Small-molecule inhibition of mitochondrial respiration—using glyceollin I, metformin, or phenformin—induced overproduction of the oncometabolite lactate, which acidified the extracellular milieu and repressed the expression of homologous recombination (HR)–associated DNA repair genes. These serial events created so-called “BRCAness,” in which cells exhibit an HR deficiency phenotype despite lacking germline mutations in HR genes such as BRCA1 and BRCA2, and, thus, sensitized the cancer cells to clinically available poly(ADP-ribose) polymerase inhibitors. The increase in lactate repressed HR-associated gene expression by decreasing histone acetylation. These effects were selective to breast cancer cells; normal epithelial cells retained HR proficiency and cell viability. These mechanistic insights into the BRCAness-prone properties of breast cancer cells support the therapeutic utility and cancer cell–specific potential of mitochondria-targeting drugs.
期刊介绍:
"Science Signaling" is a reputable, peer-reviewed journal dedicated to the exploration of cell communication mechanisms, offering a comprehensive view of the intricate processes that govern cellular regulation. This journal, published weekly online by the American Association for the Advancement of Science (AAAS), is a go-to resource for the latest research in cell signaling and its various facets.
The journal's scope encompasses a broad range of topics, including the study of signaling networks, synthetic biology, systems biology, and the application of these findings in drug discovery. It also delves into the computational and modeling aspects of regulatory pathways, providing insights into how cells communicate and respond to their environment.
In addition to publishing full-length articles that report on groundbreaking research, "Science Signaling" also features reviews that synthesize current knowledge in the field, focus articles that highlight specific areas of interest, and editor-written highlights that draw attention to particularly significant studies. This mix of content ensures that the journal serves as a valuable resource for both researchers and professionals looking to stay abreast of the latest advancements in cell communication science.