Cancer risk associated with low-dose ionizing radiation: A systematic review of epidemiological and biological evidence

IF 6.4 2区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Mutation Research-Reviews in Mutation Research Pub Date : 2024-07-01 DOI:10.1016/j.mrrev.2024.108517
Shu Min Tao , Le Le Wang , Min Da Li , Jing Wang , Hong Mei Gu , Long Jiang Zhang
{"title":"Cancer risk associated with low-dose ionizing radiation: A systematic review of epidemiological and biological evidence","authors":"Shu Min Tao ,&nbsp;Le Le Wang ,&nbsp;Min Da Li ,&nbsp;Jing Wang ,&nbsp;Hong Mei Gu ,&nbsp;Long Jiang Zhang","doi":"10.1016/j.mrrev.2024.108517","DOIUrl":null,"url":null,"abstract":"<div><div>The current radiation protection reference standards on stochastic cancer risk, drafted by the International Committee on Radiation Protection, are mostly based on the Life Span Study (LSS), though sufficient epidemiological and basic research evidence is lacking. The relationship between low-dose ionizing radiation (LDIR) and cancer risk is currently modeled with linear non-threshold (LNT) models. However, with the widespread use of medical examinations, the demand for substantial evidence of cancer risk under LDIR and the establishment of a threshold has become more significant. In the first part of the review, we summarize pivotal research in epidemiology, which includes the LSS, medical radiation studies, and occupational and environmental exposure studies. We describe and discuss solid cancers and hematopoietic malignancies induced by LDIR separately, attempting to identify the consistency and differences in the research results, and offering suggestions for future research directions. In the second part, we review recent progress in the underlying biology of cancer associated with LDIR. Besides the obvious harmful effect of DNA damage, chromosome aberrations caused by LDIR, epigenetic regulation also requires attention due to their relationship with carcinogenic and genetic risk. The multistage carcinogenesis model of stem cells, along with the varying effects of radiation on different tumors, may challenge the LNT model. Related research of stem cells, mitochondria and omic biology also offers promising directions for future research in this field.</div></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"794 ","pages":"Article 108517"},"PeriodicalIF":6.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Reviews in Mutation Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383574224000309","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The current radiation protection reference standards on stochastic cancer risk, drafted by the International Committee on Radiation Protection, are mostly based on the Life Span Study (LSS), though sufficient epidemiological and basic research evidence is lacking. The relationship between low-dose ionizing radiation (LDIR) and cancer risk is currently modeled with linear non-threshold (LNT) models. However, with the widespread use of medical examinations, the demand for substantial evidence of cancer risk under LDIR and the establishment of a threshold has become more significant. In the first part of the review, we summarize pivotal research in epidemiology, which includes the LSS, medical radiation studies, and occupational and environmental exposure studies. We describe and discuss solid cancers and hematopoietic malignancies induced by LDIR separately, attempting to identify the consistency and differences in the research results, and offering suggestions for future research directions. In the second part, we review recent progress in the underlying biology of cancer associated with LDIR. Besides the obvious harmful effect of DNA damage, chromosome aberrations caused by LDIR, epigenetic regulation also requires attention due to their relationship with carcinogenic and genetic risk. The multistage carcinogenesis model of stem cells, along with the varying effects of radiation on different tumors, may challenge the LNT model. Related research of stem cells, mitochondria and omic biology also offers promising directions for future research in this field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与低剂量电离辐射相关的癌症风险:流行病学和生物学证据的系统回顾。
尽管缺乏足够的流行病学和基础研究证据,但国际辐射防护委员会起草的关于随机癌症风险的现行辐射防护参考标准大多基于寿命研究(LSS)。低剂量电离辐射(LDIR)与癌症风险之间的关系目前采用线性非阈值(LNT)模型。然而,随着医学检查的广泛使用,对低剂量电离辐射致癌风险的实质性证据和阈值的确定的需求变得更加重要。在综述的第一部分,我们总结了流行病学的关键研究,其中包括 LSS、医疗辐射研究以及职业和环境暴露研究。我们分别描述和讨论了 LDIR 诱发的实体癌和造血恶性肿瘤,试图找出研究结果的一致性和差异性,并对未来的研究方向提出建议。第二部分,我们回顾了与 LDIR 相关的癌症生物学研究的最新进展。除了 DNA 损伤、染色体畸变等由 LDIR 引起的明显有害效应外,表观遗传调控也因其与致癌和遗传风险的关系而需要关注。干细胞的多阶段致癌模型,以及辐射对不同肿瘤的不同影响,都可能对 LNT 模型提出挑战。干细胞、线粒体和 Omic 生物学的相关研究也为这一领域的未来研究提供了前景广阔的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.20
自引率
1.90%
发文量
22
审稿时长
15.7 weeks
期刊介绍: The subject areas of Reviews in Mutation Research encompass the entire spectrum of the science of mutation research and its applications, with particular emphasis on the relationship between mutation and disease. Thus this section will cover advances in human genome research (including evolving technologies for mutation detection and functional genomics) with applications in clinical genetics, gene therapy and health risk assessment for environmental agents of concern.
期刊最新文献
State of art of micronuclei assay in exfoliative cytology as a clinical biomarker of genetic damage in oral carcinogenesis: A systematic review and meta-analysis A critical review of the impact of candidate copy number variants on autism spectrum disorder Use of micronucleus cytome assays with buccal cells for the detection of genotoxic effects: A systematic review and meta-analysis of occupational exposures to metals Genome-scale mutational signature analysis in fixed archived tissues Mechanistic insights into cisplatin response in breast tumors: Molecular determinants and drug/nanotechnology-based therapeutic opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1