{"title":"Filtering coupled Wright-Fisher diffusions.","authors":"Chiara Boetti, Matteo Ruggiero","doi":"10.1007/s00285-024-02156-y","DOIUrl":null,"url":null,"abstract":"<p><p>Coupled Wright-Fisher diffusions have been recently introduced to model the temporal evolution of finitely-many allele frequencies at several loci. These are vectors of multidimensional diffusions whose dynamics are weakly coupled among loci through interaction coefficients, which make the reproductive rates for each allele depend on its frequencies at several loci. Here we consider the problem of filtering a coupled Wright-Fisher diffusion with parent-independent mutation, when this is seen as an unobserved signal in a hidden Markov model. We assume individuals are sampled multinomially at discrete times from the underlying population, whose type configuration at the loci is described by the diffusion states, and adapt recently introduced duality methods to derive the filtering and smoothing distributions. These respectively provide the conditional distribution of the diffusion states given past data, and that conditional on the entire dataset, and are key to be able to perform parameter inference on models of this type. We show that for this model these distributions are countable mixtures of tilted products of Dirichlet kernels, and describe their mixing weights and how these can be updated sequentially. The evaluation of the weights involves the transition probabilities of the dual process, which are not available in closed form. We lay out pseudo codes for the implementation of the algorithms, discuss how to handle the unavailable quantities, and briefly illustrate the procedure with synthetic data.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"89 6","pages":"64"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02156-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coupled Wright-Fisher diffusions have been recently introduced to model the temporal evolution of finitely-many allele frequencies at several loci. These are vectors of multidimensional diffusions whose dynamics are weakly coupled among loci through interaction coefficients, which make the reproductive rates for each allele depend on its frequencies at several loci. Here we consider the problem of filtering a coupled Wright-Fisher diffusion with parent-independent mutation, when this is seen as an unobserved signal in a hidden Markov model. We assume individuals are sampled multinomially at discrete times from the underlying population, whose type configuration at the loci is described by the diffusion states, and adapt recently introduced duality methods to derive the filtering and smoothing distributions. These respectively provide the conditional distribution of the diffusion states given past data, and that conditional on the entire dataset, and are key to be able to perform parameter inference on models of this type. We show that for this model these distributions are countable mixtures of tilted products of Dirichlet kernels, and describe their mixing weights and how these can be updated sequentially. The evaluation of the weights involves the transition probabilities of the dual process, which are not available in closed form. We lay out pseudo codes for the implementation of the algorithms, discuss how to handle the unavailable quantities, and briefly illustrate the procedure with synthetic data.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.