Dynamical systems analysis of a reaction-diffusion SIRS model with optimal control for the COVID-19 spread.

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Methods in Biomechanics and Biomedical Engineering Pub Date : 2024-11-13 DOI:10.1080/10255842.2024.2423879
Amer M Salman, Mohd Hafiz Mohd
{"title":"Dynamical systems analysis of a reaction-diffusion SIRS model with optimal control for the COVID-19 spread.","authors":"Amer M Salman, Mohd Hafiz Mohd","doi":"10.1080/10255842.2024.2423879","DOIUrl":null,"url":null,"abstract":"<p><p>We examine an SIRS reaction-diffusion model with local dispersal and spatial heterogeneity to study COVID-19 dynamics. Using the operator semigroup approach, we establish the existence of disease-free equilibrium (DFE) and endemic equilibrium (EE), and derive the basic reproduction number, <math><mrow><msub><mi>R</mi><mn>0</mn></msub></mrow></math>. Simulations show that without dispersal, reinfection and limited medical resources problems can cause a plateau in cases. Dispersal and spatial heterogeneity intensify localised outbreaks, while integrated control strategies (vaccination and treatment) effectively reduce infection numbers and epidemic duration. The possibility of reinfection demonstrates the need for adaptable health measures. These insights can guide optimised control strategies for enhanced public health preparedness.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-18"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2423879","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We examine an SIRS reaction-diffusion model with local dispersal and spatial heterogeneity to study COVID-19 dynamics. Using the operator semigroup approach, we establish the existence of disease-free equilibrium (DFE) and endemic equilibrium (EE), and derive the basic reproduction number, R0. Simulations show that without dispersal, reinfection and limited medical resources problems can cause a plateau in cases. Dispersal and spatial heterogeneity intensify localised outbreaks, while integrated control strategies (vaccination and treatment) effectively reduce infection numbers and epidemic duration. The possibility of reinfection demonstrates the need for adaptable health measures. These insights can guide optimised control strategies for enhanced public health preparedness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对具有 COVID-19 传播优化控制的反应扩散 SIRS 模型进行动力系统分析。
我们研究了一个具有局部扩散和空间异质性的 SIRS 反应扩散模型,以研究 COVID-19 的动态。利用算子半群方法,我们确定了无病平衡(DFE)和地方病平衡(EE)的存在,并推导出基本繁殖数 R0。模拟结果表明,如果没有分散,再感染和有限的医疗资源问题可能会导致病例达到高峰。扩散和空间异质性会加剧局部地区的疫情爆发,而综合控制策略(疫苗接种和治疗)则能有效减少感染人数并缩短疫情持续时间。再感染的可能性表明,需要采取适应性强的卫生措施。这些见解可以指导优化控制策略,加强公共卫生准备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
期刊最新文献
The use of finite element models for backface deformation and body armour design: a systematic review. Significance of peripheral layer: the case of mucus flow through a ciliated tube using Rabinowitsch model. A high-fidelity biomechanical modeling framework for injury prediction during frontal car crash. Multivariable identification based MPC for closed-loop glucose regulation subject to individual variability. Research on MI EEG signal classification algorithm using multi-model fusion strategy coupling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1