Sonal Varshney, Lalit Kumar, Umesh K Dwivedi, Pradeep Narayan
{"title":"A Study on Radiation Level at the Treatment Plane Due to Induced Activity in Linear Accelerator Head.","authors":"Sonal Varshney, Lalit Kumar, Umesh K Dwivedi, Pradeep Narayan","doi":"10.4103/jmp.jmp_16_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The induced activity is produced in the target, monitor chamber, flattening filter (FF), collimating jaws, etc., when a high-energy photon beam is utilized for radiation therapy. This may result in add-on exposure to radiation professionals.</p><p><strong>Objective: </strong>This study aims to measure the radiation level (RL) at the treatment plane due to induced activity in the linear accelerator head.</p><p><strong>Materials and methods: </strong>In this study, RLs were measured close to the isocenter (I), LINAC head (H), and 0.5 m lateral to the isocenter (L) inside the radiation bunker. The RLs were measured for field sizes (FS) 5 cm × 5 cm, 10 cm × 10 cm, 20 cm × 20 cm, 30 cm × 30 cm, and 40 cm × 40 cm, using 50, 100, 200, 300, 400, 500, and 1000 monitor units (MUs) at above said locations inside the bunker using 10 mega-voltage (MV), 10 MV FF free, and 15 MV radiation beam.</p><p><strong>Results: </strong>RL increases with an increase in FS and MUs at all mentioned locations inside the bunker, except for 40 cm × 40 cm FS. The present study shows that RL increases with an increase in radiation beam energy, and there was significant RL inside the bunker at the mentioned location, even after the 1 min of high-energy radiation exposure.</p><p><strong>Conclusion: </strong>Therefore, treatment with a high-energy beam should be scheduled in the later evening of the working day and the jaw should be closed to a minimum before entering the bunker and a sufficient time gap should be followed to minimize the additional exposure due to induced activation in high-energy treatment.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 3","pages":"480-486"},"PeriodicalIF":0.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548074/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_16_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The induced activity is produced in the target, monitor chamber, flattening filter (FF), collimating jaws, etc., when a high-energy photon beam is utilized for radiation therapy. This may result in add-on exposure to radiation professionals.
Objective: This study aims to measure the radiation level (RL) at the treatment plane due to induced activity in the linear accelerator head.
Materials and methods: In this study, RLs were measured close to the isocenter (I), LINAC head (H), and 0.5 m lateral to the isocenter (L) inside the radiation bunker. The RLs were measured for field sizes (FS) 5 cm × 5 cm, 10 cm × 10 cm, 20 cm × 20 cm, 30 cm × 30 cm, and 40 cm × 40 cm, using 50, 100, 200, 300, 400, 500, and 1000 monitor units (MUs) at above said locations inside the bunker using 10 mega-voltage (MV), 10 MV FF free, and 15 MV radiation beam.
Results: RL increases with an increase in FS and MUs at all mentioned locations inside the bunker, except for 40 cm × 40 cm FS. The present study shows that RL increases with an increase in radiation beam energy, and there was significant RL inside the bunker at the mentioned location, even after the 1 min of high-energy radiation exposure.
Conclusion: Therefore, treatment with a high-energy beam should be scheduled in the later evening of the working day and the jaw should be closed to a minimum before entering the bunker and a sufficient time gap should be followed to minimize the additional exposure due to induced activation in high-energy treatment.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.