Zhenmin Fan, Jian Lu, Hao Cheng, Xia Ye, Xiaoyan Deng, Pengfei Zhao, Junjun Liu, Mingyuan Liu
{"title":"Insights from Computational Fluid Dynamics and In Vitro Studies for Stent Protrusion in Iliac Vein: How Far Shall We Go?","authors":"Zhenmin Fan, Jian Lu, Hao Cheng, Xia Ye, Xiaoyan Deng, Pengfei Zhao, Junjun Liu, Mingyuan Liu","doi":"10.1007/s13239-024-00758-7","DOIUrl":null,"url":null,"abstract":"<p><p>These findings provide significant implications for the enhancement of iliac vein stent implantation strategies and stent design. The prevalent use of stents for treating Iliac Vein Compression Syndrome (IVCS) has shown efficacy, yet the associated clinical adverse events, including stent restenosis and postoperative thrombosis, are significant concerns. Up to now, the mechanism how the stent implantation induces the restenosis and DVT is still unclear. Our study hypothesizes that these adverse outcomes arise from altered blood flow dynamics following stent implantation. Employing computational modeling and medical imaging, we simulated IVCS after various stenting procedures to assess their impact on venous blood flow characteristics, including wall shear stress (WSS), residence time (RRT), and oscillatory shear index (OSI). Our findings reveal that a stent protruding into the vena cava impedes blood circulation, with increased protrusion exacerbating this obstruction. This is particularly evident at the vein bifurcation, where low WSS and elevated OSI and RRT are observed. Moreover, a higher stent strut density further obstructs blood flow, deteriorating the hemodynamic environment. Consequently, stent protrusion into the vena cava can enhance the likelihood of adverse post-surgical events. These insights have profound implications for optimizing iliac vein stent implantation techniques and stent design.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"79-90"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-024-00758-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
These findings provide significant implications for the enhancement of iliac vein stent implantation strategies and stent design. The prevalent use of stents for treating Iliac Vein Compression Syndrome (IVCS) has shown efficacy, yet the associated clinical adverse events, including stent restenosis and postoperative thrombosis, are significant concerns. Up to now, the mechanism how the stent implantation induces the restenosis and DVT is still unclear. Our study hypothesizes that these adverse outcomes arise from altered blood flow dynamics following stent implantation. Employing computational modeling and medical imaging, we simulated IVCS after various stenting procedures to assess their impact on venous blood flow characteristics, including wall shear stress (WSS), residence time (RRT), and oscillatory shear index (OSI). Our findings reveal that a stent protruding into the vena cava impedes blood circulation, with increased protrusion exacerbating this obstruction. This is particularly evident at the vein bifurcation, where low WSS and elevated OSI and RRT are observed. Moreover, a higher stent strut density further obstructs blood flow, deteriorating the hemodynamic environment. Consequently, stent protrusion into the vena cava can enhance the likelihood of adverse post-surgical events. These insights have profound implications for optimizing iliac vein stent implantation techniques and stent design.
期刊介绍:
Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.