Tingting Yu, Lang Wu, Ronald J Bosch, Davey M Smith, Rui Wang
{"title":"Fast standard error estimation for joint models of longitudinal and time-to-event data based on stochastic EM algorithms.","authors":"Tingting Yu, Lang Wu, Ronald J Bosch, Davey M Smith, Rui Wang","doi":"10.1093/biostatistics/kxae043","DOIUrl":null,"url":null,"abstract":"<p><p>Maximum likelihood inference can often become computationally intensive when performing joint modeling of longitudinal and time-to-event data, due to the intractable integrals in the joint likelihood function. The computational challenges escalate further when modeling HIV-1 viral load data, owing to the nonlinear trajectories and the presence of left-censored data resulting from the assay's lower limit of quantification. In this paper, for a joint model comprising a nonlinear mixed-effect model and a Cox Proportional Hazards model, we develop a computationally efficient Stochastic EM (StEM) algorithm for parameter estimation. Furthermore, we propose a novel technique for fast standard error estimation, which directly estimates standard errors from the results of StEM iterations and is broadly applicable to various joint modeling settings, such as those containing generalized linear mixed-effect models, parametric survival models, or joint models with more than two submodels. We evaluate the performance of the proposed methods through simulation studies and apply them to HIV-1 viral load data from six AIDS Clinical Trials Group studies to characterize viral rebound trajectories following the interruption of antiretroviral therapy (ART), accounting for the informative duration of off-ART periods.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae043","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Maximum likelihood inference can often become computationally intensive when performing joint modeling of longitudinal and time-to-event data, due to the intractable integrals in the joint likelihood function. The computational challenges escalate further when modeling HIV-1 viral load data, owing to the nonlinear trajectories and the presence of left-censored data resulting from the assay's lower limit of quantification. In this paper, for a joint model comprising a nonlinear mixed-effect model and a Cox Proportional Hazards model, we develop a computationally efficient Stochastic EM (StEM) algorithm for parameter estimation. Furthermore, we propose a novel technique for fast standard error estimation, which directly estimates standard errors from the results of StEM iterations and is broadly applicable to various joint modeling settings, such as those containing generalized linear mixed-effect models, parametric survival models, or joint models with more than two submodels. We evaluate the performance of the proposed methods through simulation studies and apply them to HIV-1 viral load data from six AIDS Clinical Trials Group studies to characterize viral rebound trajectories following the interruption of antiretroviral therapy (ART), accounting for the informative duration of off-ART periods.
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.