Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway.

IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY Korean Journal of Physiology & Pharmacology Pub Date : 2024-11-14 DOI:10.4196/kjpp.24.079
Mengyuan Xin, Hangyu Jin, Xiangyu Guo, Liang Zhao, Xiangdan Li, Dongyuan Xu, Long Zheng, Lan Liu
{"title":"Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway.","authors":"Mengyuan Xin, Hangyu Jin, Xiangyu Guo, Liang Zhao, Xiangdan Li, Dongyuan Xu, Long Zheng, Lan Liu","doi":"10.4196/kjpp.24.079","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages <i>in vitro</i>. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. <i>In vitro</i>, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Physiology & Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4196/kjpp.24.079","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
维甲酸通过 MKP-1/MAPK 信号通路减轻炎症并调节巨噬细胞极化,从而改善类风湿性关节炎。
巨噬细胞是与炎症发展相关的先天性免疫细胞。维甲酸先前已被证明具有抗炎和抗关节炎的特性。然而,维甲酸调节关节炎的确切机制仍不清楚。本研究旨在探讨维甲酸是否通过调节巨噬细胞极化来改善类风湿性关节炎。本研究使用维甲酸治疗佐剂性关节炎小鼠,并通过关节炎评分、热痛觉过敏试验、组织病理学检查和免疫荧光试验评估其抗炎效果。此外,还通过流式细胞术、细胞转染和体外 RAW264.7 巨噬细胞炎症信号通路实验研究了维甲酸抗关节炎的特异性机制。维甲酸能明显缓解小鼠关节疼痛并减轻炎症细胞浸润。此外,维甲酸还能调节腹腔巨噬细胞的极化,提高精氨酸酶1的水平,减少诱导型一氧化氮合酶的表达。在体外,我们通过上调脂多糖刺激的RAW264.7细胞中丝裂原活化蛋白激酶(MAPK)磷酸酶1(MKP-1)的表达以及抑制P38、JNK和ERK磷酸化,验证了维甲酸能促进巨噬细胞从M1型向M2型转变。值得注意的是,MKP-1 基因敲除抑制了维甲酸的治疗效果。维甲酸通过MKP-1/MAPK途径调节巨噬细胞极化,对小鼠佐剂性关节炎有显著的治疗作用,在风湿性疾病的治疗中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Korean Journal of Physiology & Pharmacology
Korean Journal of Physiology & Pharmacology PHARMACOLOGY & PHARMACY-PHYSIOLOGY
CiteScore
3.20
自引率
5.00%
发文量
53
审稿时长
6-12 weeks
期刊介绍: The Korean Journal of Physiology & Pharmacology (Korean J. Physiol. Pharmacol., KJPP) is the official journal of both the Korean Physiological Society (KPS) and the Korean Society of Pharmacology (KSP). The journal launched in 1997 and is published bi-monthly in English. KJPP publishes original, peer-reviewed, scientific research-based articles that report successful advances in physiology and pharmacology. KJPP welcomes the submission of all original research articles in the field of physiology and pharmacology, especially the new and innovative findings. The scope of researches includes the action mechanism, pharmacological effect, utilization, and interaction of chemicals with biological system as well as the development of new drug targets. Theoretical articles that use computational models for further understanding of the physiological or pharmacological processes are also welcomed. Investigative translational research articles on human disease with an emphasis on physiology or pharmacology are also invited. KJPP does not publish work on the actions of crude biological extracts of either unknown chemical composition (e.g. unpurified and unvalidated) or unknown concentration. Reviews are normally commissioned, but consideration will be given to unsolicited contributions. All papers accepted for publication in KJPP will appear simultaneously in the printed Journal and online.
期刊最新文献
Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis. Haloperidol, a typical antipsychotic, inhibits 5-HT3 receptormediated currents in NCB-20 cells: a whole-cell patch-clamp study. Lactobacillus johnsonii JERA01 upregulates the production of Th1 cytokines and modulates dendritic cells-mediated immune response. Anti-inflammatory effects of LCB 03-0110 on human corneal epithelial and murine T helper 17 cells. Astragalus polysaccharide ameliorates diabetic retinopathy by inhibiting the SHH-Gli1-AQP1 signaling pathway in streptozotocin-induced type 2 diabetic rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1