João Marcelo Barreto Silva, Paulo Henrique De Souza Bermejo, Marina Figueiredo Moreira, David Nadler Prata, Daniela Mascarenhas de Queiroz Trevisan, Otávio Augusto Dos Santos
{"title":"Patients' Nonattendance in Outpatient Specialist Consultations: A National Cohort Analysis of a Health System.","authors":"João Marcelo Barreto Silva, Paulo Henrique De Souza Bermejo, Marina Figueiredo Moreira, David Nadler Prata, Daniela Mascarenhas de Queiroz Trevisan, Otávio Augusto Dos Santos","doi":"10.2147/RMHP.S468455","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Analyzing patients' nonattendance at medical appointments helps address an issue impacting the management and sustainability of health systems globally, providing valuable insights for healthcare managers. This study aims to identify factors at both patient and health system levels that contribute to understanding missed appointments.</p><p><strong>Methods: </strong>The analysis was conducted using data from secondary care consultations within the Brazilian Unified Health System between April 2018 and March 2020. Primary care includes general medical consultations, while secondary care involves specialized services provided by doctors with advanced expertise. We examined demographic factors (age, sex, race/color, socioeconomic level) and health system practices (waiting time, hospitalization, distance to service, medical specialty, and severity of clinical condition) to assess their impact on patient attendance. A weighted analysis and receiver operating characteristic (ROC) analysis were applied to determine the relative risk of nonattendance.</p><p><strong>Findings: </strong>Of 5,003,159 consultations, 435,523 (8.7%) were missed. Nonattendance was highest among patients facing long distances to the service (13.3%, [RRR] 1.227), younger age (16-30 years: 11.8%, [RRR] 1.041), and waiting times (>30: 10.9%, [RRR] 1.738). Socially vulnerable patients were more likely to miss appointments (9.6%, [RRR] 1.055) compared to less vulnerable groups (8.6%). Practice-level factors had a slightly greater impact on nonattendance (ROC: 0.621) than patient-level factors (ROC: 0.5674). The overall predictive model achieved a C statistic of 0.6228, resulting in a fair predictive ability. However, the model showed only modest prediction of no-shows, indicating the need for more detailed data to improve accuracy. Gauging which group suffers the highest risk of nonattendance was a secondary goal of this analysis.</p><p><strong>Interpretation: </strong>Young, socially vulnerable patients with long commutes and extended waiting times are at higher risk of nonattendance. Effective management of these risk factors and targeted preventive actions are essential to reduce absenteeism and improve health system efficiency.</p>","PeriodicalId":56009,"journal":{"name":"Risk Management and Healthcare Policy","volume":"17 ","pages":"2705-2716"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550699/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management and Healthcare Policy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/RMHP.S468455","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Analyzing patients' nonattendance at medical appointments helps address an issue impacting the management and sustainability of health systems globally, providing valuable insights for healthcare managers. This study aims to identify factors at both patient and health system levels that contribute to understanding missed appointments.
Methods: The analysis was conducted using data from secondary care consultations within the Brazilian Unified Health System between April 2018 and March 2020. Primary care includes general medical consultations, while secondary care involves specialized services provided by doctors with advanced expertise. We examined demographic factors (age, sex, race/color, socioeconomic level) and health system practices (waiting time, hospitalization, distance to service, medical specialty, and severity of clinical condition) to assess their impact on patient attendance. A weighted analysis and receiver operating characteristic (ROC) analysis were applied to determine the relative risk of nonattendance.
Findings: Of 5,003,159 consultations, 435,523 (8.7%) were missed. Nonattendance was highest among patients facing long distances to the service (13.3%, [RRR] 1.227), younger age (16-30 years: 11.8%, [RRR] 1.041), and waiting times (>30: 10.9%, [RRR] 1.738). Socially vulnerable patients were more likely to miss appointments (9.6%, [RRR] 1.055) compared to less vulnerable groups (8.6%). Practice-level factors had a slightly greater impact on nonattendance (ROC: 0.621) than patient-level factors (ROC: 0.5674). The overall predictive model achieved a C statistic of 0.6228, resulting in a fair predictive ability. However, the model showed only modest prediction of no-shows, indicating the need for more detailed data to improve accuracy. Gauging which group suffers the highest risk of nonattendance was a secondary goal of this analysis.
Interpretation: Young, socially vulnerable patients with long commutes and extended waiting times are at higher risk of nonattendance. Effective management of these risk factors and targeted preventive actions are essential to reduce absenteeism and improve health system efficiency.
期刊介绍:
Risk Management and Healthcare Policy is an international, peer-reviewed, open access journal focusing on all aspects of public health, policy and preventative measures to promote good health and improve morbidity and mortality in the population. Specific topics covered in the journal include:
Public and community health
Policy and law
Preventative and predictive healthcare
Risk and hazard management
Epidemiology, detection and screening
Lifestyle and diet modification
Vaccination and disease transmission/modification programs
Health and safety and occupational health
Healthcare services provision
Health literacy and education
Advertising and promotion of health issues
Health economic evaluations and resource management
Risk Management and Healthcare Policy focuses on human interventional and observational research. The journal welcomes submitted papers covering original research, clinical and epidemiological studies, reviews and evaluations, guidelines, expert opinion and commentary, and extended reports. Case reports will only be considered if they make a valuable and original contribution to the literature. The journal does not accept study protocols, animal-based or cell line-based studies.