A Computational Framework for EEG Causal Oscillatory Connectivity.

Eric Rawls, Casey Gilmore, Erich Kummerfeld, Kelvin Lim, Tasha Nienow
{"title":"A Computational Framework for EEG Causal Oscillatory Connectivity.","authors":"Eric Rawls, Casey Gilmore, Erich Kummerfeld, Kelvin Lim, Tasha Nienow","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Here we advance a new approach for measuring EEG causal oscillatory connectivity, capitalizing on recent advances in causal discovery analysis for skewed time series data and in spectral parameterization of time-frequency (TF) data. We first parameterize EEG TF data into separate oscillatory and aperiodic components. We then measure causal interactions between separated oscillatory data with the recently proposed causal connectivity method Greedy Adjacencies and Non-Gaussian Orientations (GANGO). We apply GANGO to contemporaneous time series, then we extend the GANGO method to lagged data that control for temporal autocorrelation. We apply this approach to EEG data acquired in the context of a clinical trial investigating noninvasive transcranial direct current stimulation to treat executive dysfunction following mild Traumatic Brain Injury (mTBI). First, we analyze whole-scalp oscillatory connectivity patterns using community detection. Then we demonstrate that tDCS increases the effect size of causal theta-band oscillatory connections between prefrontal sensors and the rest of the scalp, while simultaneously decreasing causal alpha-band oscillatory connections between prefrontal sensors and the rest of the scalp. Improved executive functioning following tDCS could result from increased prefrontal causal theta oscillatory influence, and decreased prefrontal alpha-band causal oscillatory influence.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"223 ","pages":"40-51"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545965/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Here we advance a new approach for measuring EEG causal oscillatory connectivity, capitalizing on recent advances in causal discovery analysis for skewed time series data and in spectral parameterization of time-frequency (TF) data. We first parameterize EEG TF data into separate oscillatory and aperiodic components. We then measure causal interactions between separated oscillatory data with the recently proposed causal connectivity method Greedy Adjacencies and Non-Gaussian Orientations (GANGO). We apply GANGO to contemporaneous time series, then we extend the GANGO method to lagged data that control for temporal autocorrelation. We apply this approach to EEG data acquired in the context of a clinical trial investigating noninvasive transcranial direct current stimulation to treat executive dysfunction following mild Traumatic Brain Injury (mTBI). First, we analyze whole-scalp oscillatory connectivity patterns using community detection. Then we demonstrate that tDCS increases the effect size of causal theta-band oscillatory connections between prefrontal sensors and the rest of the scalp, while simultaneously decreasing causal alpha-band oscillatory connections between prefrontal sensors and the rest of the scalp. Improved executive functioning following tDCS could result from increased prefrontal causal theta oscillatory influence, and decreased prefrontal alpha-band causal oscillatory influence.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑电图因果振荡连接的计算框架
在这里,我们利用倾斜时间序列数据因果发现分析和时间频率(TF)数据频谱参数化的最新进展,提出了一种测量脑电图因果振荡连通性的新方法。我们首先将脑电图 TF 数据参数化为独立的振荡成分和非周期性成分。然后,我们使用最近提出的因果连接方法 "贪婪邻接和非高斯方向(GANGO)"来测量分离的振荡数据之间的因果互动。我们将 GANGO 应用于同期时间序列,然后将 GANGO 方法扩展到控制时间自相关性的滞后数据。我们将这一方法应用于一项临床试验中获取的脑电图数据,该临床试验调查了用无创经颅直流电刺激治疗轻度脑外伤(mTBI)后的执行功能障碍。首先,我们利用群落检测分析了全尺度振荡连接模式。然后我们证明,tDCS 增加了前额叶传感器与头皮其他部分之间因果θ波段振荡连接的效应大小,同时减少了前额叶传感器与头皮其他部分之间因果α波段振荡连接。前额叶因果θ振荡影响的增加和前额叶α波段因果振荡影响的减少可能会导致 tDCS 治疗后执行功能的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning for Clinical Outcome Prediction with Partial Data Sources. Multi-Source Conformal Inference Under Distribution Shift. DISCRET: Synthesizing Faithful Explanations For Treatment Effect Estimation. Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters. Adapt and Diffuse: Sample-Adaptive Reconstruction Via Latent Diffusion Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1