Kenneth Otieno Onditi, Noé U de la Sancha, Simon Musila, Esther Kioko, Xuelong Jiang
{"title":"Unravelling spatial scale effects on elevational diversity gradients: insights from montane small mammals in Kenya.","authors":"Kenneth Otieno Onditi, Noé U de la Sancha, Simon Musila, Esther Kioko, Xuelong Jiang","doi":"10.1186/s12862-024-02328-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Montane ecosystems play crucial roles as global biodiversity hotspots. However, climatic changes and anthropogenic pressure increasingly threaten the stability of montane community dynamics, such as diversity-elevation interactions, creating a challenge in understanding species biogeography and community ecology dynamics in these crucial conservation areas. We examined how varying sampling spatial grains influence small mammal diversity patterns within Kenya's tallest montane ecosystems.</p><p><strong>Methods: </strong>Employing a combination of multidimensional alpha diversity metrics and multisite beta diversity characteristics (species richness, phylogenetic and functional diversity and divergence, and multisite beta diversity) alongside spatial generalized additive multivariate regression analyses, we tested how spatial scaling influences elevational diversity gradient patterns and their associations with environmental and human activity variables.</p><p><strong>Results: </strong>The diversity-elevation associations were generally homogeneous across spatial grains; however, idiosyncratic patterns emerged across mountains. The total (taxonomic, phylogenetic, and functional) beta diversity, nestedness, and turnover resultant components monotonically increased or decreased with varying spatial grains. The associations between the diversity patterns and the environmental and human footprint variables increased with spatial grain size but also presented variations across mountains and indices. Species richness and phylogenetic and functional richness indices were more strongly influenced by spatial scale variations than were the divergence and community structure indices in both the diversity distribution patterns and their associations with the environmental and human variables.</p><p><strong>Conclusions: </strong>The diversity-elevation and diversity-environment (including human activity pressure) relationships across spatial grains suggest that montane small mammal diversity patterns portray subtle but systematic sensitivity to sampling spatial grain variation and underscore the importance of geographical context in shaping these elevational diversity gradients. For improved effectiveness, conservation efforts should consider these spatial effects and the unique geographical background of individual montane ecosystems.</p>","PeriodicalId":93910,"journal":{"name":"BMC ecology and evolution","volume":"24 1","pages":"139"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545329/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC ecology and evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12862-024-02328-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Montane ecosystems play crucial roles as global biodiversity hotspots. However, climatic changes and anthropogenic pressure increasingly threaten the stability of montane community dynamics, such as diversity-elevation interactions, creating a challenge in understanding species biogeography and community ecology dynamics in these crucial conservation areas. We examined how varying sampling spatial grains influence small mammal diversity patterns within Kenya's tallest montane ecosystems.
Methods: Employing a combination of multidimensional alpha diversity metrics and multisite beta diversity characteristics (species richness, phylogenetic and functional diversity and divergence, and multisite beta diversity) alongside spatial generalized additive multivariate regression analyses, we tested how spatial scaling influences elevational diversity gradient patterns and their associations with environmental and human activity variables.
Results: The diversity-elevation associations were generally homogeneous across spatial grains; however, idiosyncratic patterns emerged across mountains. The total (taxonomic, phylogenetic, and functional) beta diversity, nestedness, and turnover resultant components monotonically increased or decreased with varying spatial grains. The associations between the diversity patterns and the environmental and human footprint variables increased with spatial grain size but also presented variations across mountains and indices. Species richness and phylogenetic and functional richness indices were more strongly influenced by spatial scale variations than were the divergence and community structure indices in both the diversity distribution patterns and their associations with the environmental and human variables.
Conclusions: The diversity-elevation and diversity-environment (including human activity pressure) relationships across spatial grains suggest that montane small mammal diversity patterns portray subtle but systematic sensitivity to sampling spatial grain variation and underscore the importance of geographical context in shaping these elevational diversity gradients. For improved effectiveness, conservation efforts should consider these spatial effects and the unique geographical background of individual montane ecosystems.