Boolean network modeling and its integration with experimental read-outs : An interdisciplinary presentation using a leukemia model.

Julia Maier, Julian D Schwab, Silke D Werle, Ralf Marienfeld, Peter Möller, Nadine T Gaisa, Nensi Ikonomi, Hans A Kestler
{"title":"Boolean network modeling and its integration with experimental read-outs : An interdisciplinary presentation using a leukemia model.","authors":"Julia Maier, Julian D Schwab, Silke D Werle, Ralf Marienfeld, Peter Möller, Nadine T Gaisa, Nensi Ikonomi, Hans A Kestler","doi":"10.1007/s00292-024-01395-6","DOIUrl":null,"url":null,"abstract":"<p><p>The limited availability of suitable animal models and cell lines often impedes experimental cancer research. Wet-laboratory experiments are also time-consuming and cost-intensive. In this review, we present an in silico modeling strategy, namely, Boolean network (BN) models, and demonstrate how it could be applied to streamline experimental design and to focus the effort of experimental read-outs. Boolean network models allow for the dynamic analysis of large molecular signaling pathways and their crosstalks. After establishing and validating a specific tumor model, mechanistic insights into the tumor cell behavior can be gained by studying the trajectories of different tumor phenotypes. Also, tumor driver and drug target screenings can be performed. These automatic screenings can help to identify new intervention targets and putative biomarkers for tumor evolution, hence guiding new wet-laboratory experiments. The goal of this round-up is to demonstrate how to establish, validate, and use BN modeling and its crosstalks in classic wet-laboratory research using a chronic lymphocytic leukemia (CLL) BN model.</p>","PeriodicalId":74402,"journal":{"name":"Pathologie (Heidelberg, Germany)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathologie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00292-024-01395-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The limited availability of suitable animal models and cell lines often impedes experimental cancer research. Wet-laboratory experiments are also time-consuming and cost-intensive. In this review, we present an in silico modeling strategy, namely, Boolean network (BN) models, and demonstrate how it could be applied to streamline experimental design and to focus the effort of experimental read-outs. Boolean network models allow for the dynamic analysis of large molecular signaling pathways and their crosstalks. After establishing and validating a specific tumor model, mechanistic insights into the tumor cell behavior can be gained by studying the trajectories of different tumor phenotypes. Also, tumor driver and drug target screenings can be performed. These automatic screenings can help to identify new intervention targets and putative biomarkers for tumor evolution, hence guiding new wet-laboratory experiments. The goal of this round-up is to demonstrate how to establish, validate, and use BN modeling and its crosstalks in classic wet-laboratory research using a chronic lymphocytic leukemia (CLL) BN model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
布尔网络建模及其与实验读数的整合:使用白血病模型的跨学科演示。
合适的动物模型和细胞系有限,往往会阻碍癌症实验研究。湿法实验室实验也耗时费钱。在这篇综述中,我们介绍了一种硅学建模策略,即布尔网络(BN)模型,并展示了如何将其应用于简化实验设计和集中实验读数的工作。布尔网络模型可对大型分子信号通路及其交叉关系进行动态分析。在建立和验证特定肿瘤模型后,通过研究不同肿瘤表型的轨迹,可以获得对肿瘤细胞行为的机理认识。此外,还可以进行肿瘤驱动因素和药物靶点筛选。这些自动筛选有助于确定新的干预靶点和肿瘤演变的潜在生物标志物,从而指导新的湿实验室实验。本综述的目的是利用慢性淋巴细胞白血病(CLL)BN 模型,展示如何在经典湿实验室研究中建立、验证和使用 BN 建模及其相关技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Key considerations when implementing new diagnostic technologies in routine practice. Reconstructing 3D histological structures using machine learning (artificial intelligence) algorithms. [Microsatellite instability-What should be considered in routine examinations?] [Centers for experimental animal pathology still occupy a small but valuable niche in translational medicine-time for change?] Diagnostic and prognostic biomarkers for pancreatic neuroendocrine neoplasms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1