DeepRSMA: a cross-fusion based deep learning method for RNA-small molecule binding affinity prediction.

Zhijian Huang, Yucheng Wang, Song Chen, Yaw Sing Tan, Lei Deng, Min Wu
{"title":"DeepRSMA: a cross-fusion based deep learning method for RNA-small molecule binding affinity prediction.","authors":"Zhijian Huang, Yucheng Wang, Song Chen, Yaw Sing Tan, Lei Deng, Min Wu","doi":"10.1093/bioinformatics/btae678","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>RNA is implicated in numerous aberrant cellular functions and disease progressions, highlighting the crucial importance of RNA-targeted drugs. To accelerate the discovery of such drugs, it is essential to develop an effective computational method for predicting RNA-small molecule affinity (RSMA). Recently, deep learning based computational methods have been promising due to their powerful nonlinear modeling ability. However, the leveraging of advanced deep learning methods to mine the diverse information of RNAs, small molecules and their interaction still remains a great challenge.</p><p><strong>Results: </strong>In this study, we present DeepRSMA, an innovative cross-attention-based deep learning method for RSMA prediction. To effectively capture fine-grained features from RNA and small molecules, we developed nucleotide-level and atomic-level feature extraction modules for RNA and small molecules, respectively. Additionally, we incorporated both sequence and graph views into these modules to capture features from multiple perspectives. Moreover, a Transformer-based cross-fusion module is introduced to learn the general patterns of interactions between RNAs and small molecules. To achieve effective RSMA prediction, we integrated the RNA and small molecule representations from the feature extraction and cross-fusion modules. Our results show that DeepRSMA outperforms baseline methods in multiple test settings. The interpretability analysis and the case study on spinal muscular atrophy (SMA) demonstrate that DeepRSMA has the potential to guide RNA-targeted drug design.</p><p><strong>Availability: </strong>The codes and data are publicly available at https://github.com/Hhhzj-7/DeepRSMA.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: RNA is implicated in numerous aberrant cellular functions and disease progressions, highlighting the crucial importance of RNA-targeted drugs. To accelerate the discovery of such drugs, it is essential to develop an effective computational method for predicting RNA-small molecule affinity (RSMA). Recently, deep learning based computational methods have been promising due to their powerful nonlinear modeling ability. However, the leveraging of advanced deep learning methods to mine the diverse information of RNAs, small molecules and their interaction still remains a great challenge.

Results: In this study, we present DeepRSMA, an innovative cross-attention-based deep learning method for RSMA prediction. To effectively capture fine-grained features from RNA and small molecules, we developed nucleotide-level and atomic-level feature extraction modules for RNA and small molecules, respectively. Additionally, we incorporated both sequence and graph views into these modules to capture features from multiple perspectives. Moreover, a Transformer-based cross-fusion module is introduced to learn the general patterns of interactions between RNAs and small molecules. To achieve effective RSMA prediction, we integrated the RNA and small molecule representations from the feature extraction and cross-fusion modules. Our results show that DeepRSMA outperforms baseline methods in multiple test settings. The interpretability analysis and the case study on spinal muscular atrophy (SMA) demonstrate that DeepRSMA has the potential to guide RNA-targeted drug design.

Availability: The codes and data are publicly available at https://github.com/Hhhzj-7/DeepRSMA.

Supplementary information: Supplementary data are available at Bioinformatics online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepRSMA:一种基于交叉融合的深度学习方法,用于 RNA-小分子结合亲和力预测。
动机:RNA 与许多异常细胞功能和疾病进展有关,这凸显了 RNA 靶向药物的至关重要性。为了加速此类药物的发现,必须开发一种有效的计算方法来预测 RNA-小分子亲和力(RSMA)。最近,基于深度学习的计算方法因其强大的非线性建模能力而大有可为。然而,如何利用先进的深度学习方法挖掘 RNA、小分子及其相互作用的各种信息仍然是一个巨大的挑战:在这项研究中,我们提出了 DeepRSMA,一种创新的基于交叉注意力的深度学习方法,用于 RSMA 预测。为了有效捕捉 RNA 和小分子的细粒度特征,我们分别为 RNA 和小分子开发了核苷酸级和原子级特征提取模块。此外,我们还在这些模块中加入了序列和图视图,以便从多个角度捕捉特征。此外,我们还引入了基于 Transformer 的交叉融合模块,以学习 RNA 和小分子之间相互作用的一般模式。为了实现有效的 RSMA 预测,我们整合了特征提取和交叉融合模块中的 RNA 和小分子表征。结果表明,DeepRSMA 在多个测试环境中都优于基准方法。可解释性分析和脊髓性肌萎缩症(SMA)案例研究表明,DeepRSMA 具有指导 RNA 靶向药物设计的潜力:代码和数据可在 https://github.com/Hhhzj-7/DeepRSMA.Supplementary 信息中公开获取:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phasing Nanopore genome assembly by integrating heterozygous variations and Hi-C data. STRprofiler: efficient comparisons of short tandem repeat profiles for biomedical model authentication. Virtual Tissue Expression Analysis. Fast Polypharmacy Side Effect Prediction Using Tensor Factorisation. Lefser: Implementation of metagenomic biomarker discovery tool, LEfSe, in R.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1