A hyperparameter optimization-assisted deep learning method towards thermal error modeling of spindles.

Shicun Ao, Sitong Xiang, Jianguo Yang
{"title":"A hyperparameter optimization-assisted deep learning method towards thermal error modeling of spindles.","authors":"Shicun Ao, Sitong Xiang, Jianguo Yang","doi":"10.1016/j.isatra.2024.11.001","DOIUrl":null,"url":null,"abstract":"<p><p>Spindle thermal errors significantly influence the machining accuracy of machine tools, necessitating precise modeling. While deep learning methods are commonly used for this purpose, their generalization ability and performance largely depend on design of the network structure and the selection of hyperparameters. To address these challenges, this study proposes a neural network model that integrates Bayesian optimization (BO) with dilated convolution neural network (DCNN). Dilated convolutions enhance traditional CNN models by using a dilation rate, which allows the convolutional kernel to cover a larger receptive field without increasing parameter count or computational cost. To prevent local optima during hyperparameter tuning, a Bayesian algorithm based on Gaussian processes (GP) is utilized, which optimizes 9 critical hyperparameters in the DCNN. Experimental results demonstrate that the proposed model achieves over 95 % accuracy in predicting radial thermal errors for both heating and cooling states in the X and Y directions.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.11.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spindle thermal errors significantly influence the machining accuracy of machine tools, necessitating precise modeling. While deep learning methods are commonly used for this purpose, their generalization ability and performance largely depend on design of the network structure and the selection of hyperparameters. To address these challenges, this study proposes a neural network model that integrates Bayesian optimization (BO) with dilated convolution neural network (DCNN). Dilated convolutions enhance traditional CNN models by using a dilation rate, which allows the convolutional kernel to cover a larger receptive field without increasing parameter count or computational cost. To prevent local optima during hyperparameter tuning, a Bayesian algorithm based on Gaussian processes (GP) is utilized, which optimizes 9 critical hyperparameters in the DCNN. Experimental results demonstrate that the proposed model achieves over 95 % accuracy in predicting radial thermal errors for both heating and cooling states in the X and Y directions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于主轴热误差建模的超参数优化辅助深度学习方法。
主轴热误差会严重影响机床的加工精度,因此必须进行精确建模。虽然深度学习方法通常用于此目的,但其泛化能力和性能在很大程度上取决于网络结构的设计和超参数的选择。为了应对这些挑战,本研究提出了一种将贝叶斯优化(BO)与扩张卷积神经网络(DCNN)相结合的神经网络模型。扩张卷积通过使用扩张率来增强传统的 CNN 模型,从而在不增加参数数量或计算成本的情况下让卷积核覆盖更大的感受野。为了防止超参数调整过程中出现局部最优,我们采用了基于高斯过程(GP)的贝叶斯算法,该算法优化了 DCNN 中的 9 个关键超参数。实验结果表明,所提出的模型在预测 X 和 Y 方向上加热和冷却状态的径向热误差时,准确率超过 95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking control for two-wheeled mobile robots via event-triggered mechanism. Analysis of proportional-resonant damping factors in the parallel operation of UPSs. State estimation of networked nonlinear systems with aperiodic sampled delayed measurement. Hybrid impulsive control for global stabilization of subfully actuated systems. A high-speed method for computing reachable sets based on variable-size grid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1