Xiaobin Wang PhD, Lei Yang MS, Ruili Chen PhD, Wei Guo PhD, Xun Han PhD, Aolin Zhang BS
{"title":"Accurate felt-tip pen brands classification based on a convolutional neural network using data augmentation","authors":"Xiaobin Wang PhD, Lei Yang MS, Ruili Chen PhD, Wei Guo PhD, Xun Han PhD, Aolin Zhang BS","doi":"10.1111/1556-4029.15658","DOIUrl":null,"url":null,"abstract":"<p>Ink analysis played an important role in document examination, but the limited dataset made it difficult for many algorithms to distinguish inks accurately. This article aimed to evaluate the feasibility of two data augmentation (DA) methods, Gaussian noise data augmentation (GNDA) and extended multiplicative signal augmentation (EMSA), for the classification of felt-tip pen ink brands. Four brands of felt-tip pens were analyzed using FT-IR spectroscopy. Five classification models were used, convolutional neural network (CNN), K-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and partial least squares discriminant analysis (PLS-DA). The results showed that the datasets generated by GNDA and EMSA are similar to the original datasets and have some diversity. The EMSA method had optimal classification results when combined with CNN, with classification accuracy (ACC), precision (PRE), recall (REC) and F1 score reaching 99.86%, 99.87%, 99.86%, 99.86%, and 99.86%, compared with GNDA-CNN method (ACC = 80.90%, PRE = 87.34%, REC = 81.62%, F1 score = 79.23%). This study shows that when raw spectral data is small, DA methods can be combined with neural network models to identify ink brands effectively.</p>","PeriodicalId":15743,"journal":{"name":"Journal of forensic sciences","volume":"70 1","pages":"170-178"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.15658","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ink analysis played an important role in document examination, but the limited dataset made it difficult for many algorithms to distinguish inks accurately. This article aimed to evaluate the feasibility of two data augmentation (DA) methods, Gaussian noise data augmentation (GNDA) and extended multiplicative signal augmentation (EMSA), for the classification of felt-tip pen ink brands. Four brands of felt-tip pens were analyzed using FT-IR spectroscopy. Five classification models were used, convolutional neural network (CNN), K-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and partial least squares discriminant analysis (PLS-DA). The results showed that the datasets generated by GNDA and EMSA are similar to the original datasets and have some diversity. The EMSA method had optimal classification results when combined with CNN, with classification accuracy (ACC), precision (PRE), recall (REC) and F1 score reaching 99.86%, 99.87%, 99.86%, 99.86%, and 99.86%, compared with GNDA-CNN method (ACC = 80.90%, PRE = 87.34%, REC = 81.62%, F1 score = 79.23%). This study shows that when raw spectral data is small, DA methods can be combined with neural network models to identify ink brands effectively.
期刊介绍:
The Journal of Forensic Sciences (JFS) is the official publication of the American Academy of Forensic Sciences (AAFS). It is devoted to the publication of original investigations, observations, scholarly inquiries and reviews in various branches of the forensic sciences. These include anthropology, criminalistics, digital and multimedia sciences, engineering and applied sciences, pathology/biology, psychiatry and behavioral science, jurisprudence, odontology, questioned documents, and toxicology. Similar submissions dealing with forensic aspects of other sciences and the social sciences are also accepted, as are submissions dealing with scientifically sound emerging science disciplines. The content and/or views expressed in the JFS are not necessarily those of the AAFS, the JFS Editorial Board, the organizations with which authors are affiliated, or the publisher of JFS. All manuscript submissions are double-blind peer-reviewed.