Dialectics of perisomatic inhibition-The unity and conflict of opposites.

IF 3.4 3区 医学 Q2 NEUROSCIENCES Frontiers in Neural Circuits Pub Date : 2024-10-29 eCollection Date: 2024-01-01 DOI:10.3389/fncir.2024.1494300
Andrei Rozov, David John Jappy, Ksenia Maltseva, Alina Vazetdinova, Fliza Valiullina-Rakhmatullina
{"title":"Dialectics of perisomatic inhibition-The unity and conflict of opposites.","authors":"Andrei Rozov, David John Jappy, Ksenia Maltseva, Alina Vazetdinova, Fliza Valiullina-Rakhmatullina","doi":"10.3389/fncir.2024.1494300","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past three decades, a great deal of attention has been paid to the study of perisomatic inhibition and perisomatic inhibitory basket cells. A growing body of experimental evidence points to the leading role of perisomatic inhibitory cells in the generation of oscillatory activity in various frequency ranges. Recently the link between the activity of basket cells and complex behavior has been demonstrated in several laboratories. However, all this is true only for one type of perisomatic inhibitory interneuron-parvalbumin-positive basket cells. Nevertheless, where parvalbumin-positive basket cells are found, there is another type of basket cell, cholecystokinin-positive interneurons. These two types of interneurons share a number of common features: they innervate the same compartments of target neurons and they often receive excitation from the same sources, but they also differ from each other in the synchrony of their GABA release and expression of receptors. The functional role of cholecystokinin-positive basket cells in oscillatory activity is not so obvious. They were thought to be involved in theta oscillations, however recent measurements in free moving animals have put some doubts on this hypothesis. Therefore, an important question is, whether these two types of basket cells work synergistically or perform opposing actions in functional networks? In this mini-review, we attempt to answer this question by putting forward the idea that these two types of basket cells are functionally united as two entities of the same network, and their opposing actions are necessary to maintain rhythmogenesis in a \"healthy\", physiological range.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"18 ","pages":"1494300"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554531/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neural Circuits","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncir.2024.1494300","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past three decades, a great deal of attention has been paid to the study of perisomatic inhibition and perisomatic inhibitory basket cells. A growing body of experimental evidence points to the leading role of perisomatic inhibitory cells in the generation of oscillatory activity in various frequency ranges. Recently the link between the activity of basket cells and complex behavior has been demonstrated in several laboratories. However, all this is true only for one type of perisomatic inhibitory interneuron-parvalbumin-positive basket cells. Nevertheless, where parvalbumin-positive basket cells are found, there is another type of basket cell, cholecystokinin-positive interneurons. These two types of interneurons share a number of common features: they innervate the same compartments of target neurons and they often receive excitation from the same sources, but they also differ from each other in the synchrony of their GABA release and expression of receptors. The functional role of cholecystokinin-positive basket cells in oscillatory activity is not so obvious. They were thought to be involved in theta oscillations, however recent measurements in free moving animals have put some doubts on this hypothesis. Therefore, an important question is, whether these two types of basket cells work synergistically or perform opposing actions in functional networks? In this mini-review, we attempt to answer this question by putting forward the idea that these two types of basket cells are functionally united as two entities of the same network, and their opposing actions are necessary to maintain rhythmogenesis in a "healthy", physiological range.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
周身抑制的辩证法--对立面的统一与冲突。
在过去的三十年中,人们一直非常关注对同膜周围抑制和同膜周围抑制性篮状细胞的研究。越来越多的实验证据表明,在产生各种频率范围的振荡活动中,嗜周抑制细胞起着主导作用。最近,一些实验室证实了篮状细胞的活动与复杂行为之间的联系。然而,所有这一切都只适用于一种周围抑制性中间神经元--副发光素阳性篮状细胞。然而,在发现副发光素阳性篮状细胞的地方,还有另一类篮状细胞,即胆囊收缩素阳性中间神经元。这两类中间神经元有许多共同点:它们支配靶神经元的相同区室,而且经常接受来自相同来源的兴奋,但它们在 GABA 释放的同步性和受体表达方面也有所不同。胆囊收缩素阳性的篮状细胞在振荡活动中的功能作用并不明显。人们认为它们参与了θ振荡,但最近在自由活动的动物身上进行的测量对这一假设提出了一些质疑。因此,一个重要的问题是,在功能网络中,这两种类型的篮状细胞是协同工作还是发挥相反的作用?在这篇微型综述中,我们试图回答这个问题,我们提出的观点是,这两类篮状细胞在功能上是作为同一网络的两个实体结合在一起的,它们的对立作用是将节律发生维持在 "健康 "生理范围内的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
5.70%
发文量
135
审稿时长
4-8 weeks
期刊介绍: Frontiers in Neural Circuits publishes rigorously peer-reviewed research on the emergent properties of neural circuits - the elementary modules of the brain. Specialty Chief Editors Takao K. Hensch and Edward Ruthazer at Harvard University and McGill University respectively, are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Frontiers in Neural Circuits launched in 2011 with great success and remains a "central watering hole" for research in neural circuits, serving the community worldwide to share data, ideas and inspiration. Articles revealing the anatomy, physiology, development or function of any neural circuitry in any species (from sponges to humans) are welcome. Our common thread seeks the computational strategies used by different circuits to link their structure with function (perceptual, motor, or internal), the general rules by which they operate, and how their particular designs lead to the emergence of complex properties and behaviors. Submissions focused on synaptic, cellular and connectivity principles in neural microcircuits using multidisciplinary approaches, especially newer molecular, developmental and genetic tools, are encouraged. Studies with an evolutionary perspective to better understand how circuit design and capabilities evolved to produce progressively more complex properties and behaviors are especially welcome. The journal is further interested in research revealing how plasticity shapes the structural and functional architecture of neural circuits.
期刊最新文献
Alpha-2 nicotinic acetylcholine receptors regulate spectral integration in auditory cortex. Dialectics of perisomatic inhibition-The unity and conflict of opposites. Comparison of orientation encoding across layers within single columns of primate V1 revealed by high-density recordings. Criticality and universality in neuronal cultures during “up” and “down” states Vasopressin differentially modulates the excitability of rat olfactory bulb neuron subtypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1